Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Hazard Mater ; 476: 135218, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024771

RESUMEN

Rice cadmium (Cd) and microplastics are prevalent contaminants, posing a co-exposure threat to humans by means of dietary intake. To assess whether co-exposure of microplastics affects the bioavailability of rice Cd, mice were exposed to Cd-contaminated rice with microplastic co-exposure. We found that polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyamide (PA) microplastic co-exposure via diet consumption (2 µg g-1) caused 1.17-1.38-fold higher Cd accumulation in tissue of mice fed by Cd-rice. For mice with co-exposure of PE microplastics, the higher rice-Cd bioavailability corresponded to colonization of Lactobacillus reuteri (38.9 % vs 17.5 %) in the gut compared to control mice, which caused higher production of gut metabolites particularly peptides, likely causing a 'side effect' of elevating Cd solubility in the intestinal lumen. In addition, abundance of sphingosine 1-phosphate in the gut of mice was reduced under PE microplastic exposure, which may reduce intracellular calcium ions (Ca2+) in enterocytes and form a weaker competition in pumping of intracellular Ca2+ and Cd2+ across the basolateral membrane of enterocytes, leading to higher Cd2+ transport efficiency. The results suggest elevated Cd exposure risk from rice consumption with microplastic co-exposure at environmentally relevant low concentrations.

2.
Int J Biol Macromol ; 275(Pt 1): 133579, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964678

RESUMEN

Polyphenols have attracted extensive attention due to their rich functional activities, such as antioxidant, anti-inflammatory and anti-tumor. However, the low solubility and poor stability limit their bioavailability and functional activities. Plant-derived ferritin cages have a unique hollow cage structure that can embed polyphenols to improve their unfavorable properties. Therefore, it is essential to adequately elaborate and summarize plant-derived ferritin cages to maximize their potential benefits in nutritional interventions. This review focuses on the fundamental properties of plant-derived ferritin cages, including the preparation process, purification technology, identification methods, and structural and functional properties. The relevant research on ferritin cages in polyphenol delivery has been summarized, including the delivery of water/lipid soluble polyphenols, modification of ferritin cages, and the interaction between polyphenols and ferritin cages. The research progress, shortcomings and prospects of plant-derived ferritin cages in precise nutrition are introduced. In addition, the relevant research on ferritin in immune response and protein engineering is also discussed to provide the theoretical basis for applying plant-derived ferritin cages in many frontier fields.

3.
Int J Biol Macromol ; 270(Pt 2): 132449, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777020

RESUMEN

Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.


Asunto(s)
Cápsulas , Proteínas , Proteínas/química , Proteínas/administración & dosificación , Humanos , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Animales
4.
Environ Sci Technol ; 58(16): 6900-6912, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613493

RESUMEN

Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.

5.
Sci Total Environ ; 908: 168374, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956851

RESUMEN

Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.


Asunto(s)
Cadmio , Contaminantes del Suelo , Humanos , Cadmio/análisis , Lactuca , Lantano/toxicidad , Plomo/toxicidad , Verduras , Endocitosis , Contaminantes del Suelo/análisis , Suelo
6.
Environ Sci Technol ; 57(41): 15422-15431, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37797956

RESUMEN

Arsenic (As) exposure has been related to many diseases, including cancers. Given the antioxidant and anti-inflammatory properties, the dietary supplementation of polyphenols may alleviate As toxicity. Based on a mouse bioassay, this study investigated the effects of chlorogenic acid (CA), quercetin (QC), tannic acid (TA), resveratrol (Res), and epigallocatechin gallate (EGCG) on As bioavailability, biotransformation, and toxicity. Intake of CA, QC, and EGCG significantly (p < 0.05) increased total As concentrations in liver (0.48-0.58 vs 0.27 mg kg-1) and kidneys (0.72-0.93 vs 0.59 mg kg-1) compared to control mice. Upregulated intestinal expression of phosphate transporters with QC and EGCG and proliferation of Lactobacillus in the gut of mice treated with CA and QC were observed, facilitating iAsV absorption via phosphate transporters and intestinal As solubility via organic acid metabolites. Although As bioavailability was elevated, serum levels of alpha fetoprotein and carcinoembryonic antigen of mice treated with all five polyphenols were reduced by 13.1-16.1% and 9.83-17.5%, suggesting reduced cancer risk. This was mainly due to higher DMAV (52.1-67.6% vs 31.4%) and lower iAsV contribution (4.95-10.7% vs 27.9%) in liver of mice treated with polyphenols. This study helps us develop dietary strategies to lower As toxicity.


Asunto(s)
Arsénico , Polifenoles , Ratones , Animales , Polifenoles/farmacología , Arsénico/toxicidad , Disponibilidad Biológica , Suplementos Dietéticos , Biotransformación , Proteínas de Transporte de Fosfato
8.
J Hazard Mater ; 452: 131367, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030226

RESUMEN

Due to naturally high Ni or soil Ni contamination, high Ni concentrations are reported in rice, raising a need to reduce rice Ni exposure risk. Here, reduction in rice Ni concentration and Ni oral bioavailability with rice Fe biofortification and dietary Fe supplementation was assessed using rice cultivation and mouse bioassays. Results showed that for rice grown in a high geogenic Ni soil, increases in rice Fe concentration from ∼10.0 to ∼30.0 µg g-1 with foliar EDTA-FeNa application led to decreases in Ni concentration from ∼4.0 to ∼1.0 µg g-1 due to inhibited Ni transport from shoot to grains via down-regulated Fe transporters. When fed to mice, Fe-biofortified rice was significantly (p < 0.01) lower in Ni oral bioavailability (59.9 ± 11.9% vs. 77.8 ± 15.1%; 42.4 ± 9.81% vs. 70.4 ± 6.81%). Dietary amendment of exogenous Fe supplements to two Ni-contaminated rice samples at 10-40 µg Fe g-1 also significantly (p < 0.05) reduced Ni RBA from 91.7% to 61.0-69.5% and from 77.4% to 29.2-55.2% due to down-regulation of duodenal Fe transporter expression. Results suggest that the Fe-based strategies not only reduced rice Ni concentration but also lowered rice Ni oral bioavailability, playing dual roles in reducing rice-Ni exposure.


Asunto(s)
Oryza , Contaminantes del Suelo , Animales , Ratones , Hierro/metabolismo , Biofortificación , Oryza/metabolismo , Disponibilidad Biológica , Suelo , Contaminantes del Suelo/metabolismo
9.
Environ Pollut ; 324: 121376, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36863442

RESUMEN

Microplastics exposure is a new human health crisis. Although progress in understanding health effects of microplastic exposure has been made, microplastic impacts on absorption of co-exposure toxic pollutants such as arsenic (As), i.e., oral bioavailability, remain unclear. Microplastic ingestion may interfere As biotransformation, gut microbiota, and/or gut metabolites, thereby affecting As oral bioavailability. Here, mice were exposed to arsenate (6 µg As g-1) alone and in combination with polyethylene particles of 30 and 200 µm (PE-30 and PE-200 having surface area of 2.17 × 103 and 3.23 × 102 cm2 g-1) in diet (2, 20, and 200 µg PE g-1) to determine the influence of microplastic co-ingestion on arsenic (As) oral bioavailability. By determining the percentage of cumulative As consumption recovered in urine of mice, As oral bioavailability increased significantly (P < 0.05) from 72.0 ± 5.41% to 89.7 ± 6.33% with PE-30 at 200 µg PE g-1 rather than with PE-200 at 2, 20, and 200 µg PE g-1 (58.5 ± 19.0%, 72.3 ± 6.28%, and 69.2 ± 17.8%). Both PE-30 and PE-200 exerted limited effects on pre- and post-absorption As biotransformation in intestinal content, intestine tissue, feces, and urine. They affected gut microbiota dose-dependently, with lower exposure concentrations having more pronounced effects. Consistent with the PE-30-specific As oral bioavailability increase, PE exposure significantly up-regulated gut metabolite expression, and PE-30 exerted greater effects than PE-200, suggesting that gut metabolite changes may contribute to As oral bioavailability increase. This was supported by 1.58-4.07-fold higher As solubility in the presence of up-regulated metabolites (e.g., amino acid derivatives, organic acids, and pyrimidines and purines) in the intestinal tract assessed by an in vitro assay. Our results suggested that microplastic exposure especially smaller particles may exacerbate the oral bioavailability of As, providing a new angle to understand health effects of microplastics.


Asunto(s)
Arsénico , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Microplásticos/química , Plásticos/toxicidad , Disponibilidad Biológica , Arsénico/toxicidad , Compuestos Orgánicos , Polietileno/farmacología
10.
Environ Sci Technol ; 57(2): 1017-1027, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36580282

RESUMEN

Early-life arsenic (As) exposure is a particular health concern. However, it is unknown if As ingested early in life is more readily absorbed from the gastrointestinal (GI) tract, i.e., higher in oral bioavailability. Here, weanling (3-week) and adult (6-week-old) female mice were exposed to arsenate in the diet (10 µg g-1) over a 3-week period with As oral bioavailability estimated using As urinary excretion as the bioavailability endpoint. The As urinary excretion factor was 1.54-fold higher in weanling mice compared to adult mice (82.2 ± 7.29 versus 53.1 ± 3.73%), while weanling mice also showed 2.28-, 1.50-, 1.48-, and 1.89-fold higher As concentration in small intestine tissue, blood, liver, and kidneys, demonstrating significantly higher As oral bioavailability of early-life exposure. Compared to adult mice, weanling mice significantly differed in gut microbiota, but the difference did not lead to remarkable differences in As biotransformation in the GI tract or tissue and in overall gut metabolite composition. Although the expression of several metabolites (e.g., atrolactic acid, hydroxyphenyllactic acid, and xanthine) was up-regulated in weanling mice, they had limited ability to elevate As solubility in the intestinal tract. Compared to adult mice, the intestinal barrier function and intestinal expression of phosphate transporters responsible for arsenate absorption were similar in weanling mice. However, the small intestine of weanling mice was characterized by more defined intestinal villi with greater length and smaller width, providing a greater surface area for As to be absorbed across the GI barrier. The results highlight that early-life As exposure can be more readily absorbed, advancing the understanding of its health risk.


Asunto(s)
Arsénico , Microbioma Gastrointestinal , Animales , Ratones , Femenino , Arseniatos , Mucosa Intestinal/metabolismo
11.
Environ Health Perspect ; 130(12): 127004, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541774

RESUMEN

BACKGROUND: Elevating dietary calcium (Ca) intake can reduce metal(loid)oral bioavailability. However, the ability of a range of Ca minerals to reduce oral bioavailability of lead (Pb), cadmium (Cd), and arsenic (As) from indoor dust remains unclear. OBJECTIVES: This study evaluated the ability of Ca minerals to reduce Pb, Cd, and As oral bioavailability from indoor dust and associated mechanisms. METHODS: A mouse bioassay was conducted to assess Pb, Cd, and As relative bioavailability (RBA) in three indoor dust samples, which were amended into mouse chow without and with addition of CaHPO4, CaCO3, Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate at 200-5,000µg/g Ca. The mRNA expression of Ca and phosphate (P) transporters involved in transcellular Pb, Cd and As transport in the duodenum of mice was quantified using real-time polymerase chain reaction. Serum 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], parathyroid hormone (PTH), and renal CYP27B1 activity controlling 1,25(OH)2D3 synthesis were measured using ELISA kits. Metal(loid) speciation in the feces of mice was characterized using X-ray absorption near-edge structure (XANES) spectroscopy. RESULTS: In general, mice exposed to each of the Ca minerals exhibited lower Pb-, Cd-, and As-RBA for three dusts. However, RBAs with the different Ca minerals varied. Among minerals, mice fed dietary CaHPO4 did not exhibit lower duodenal mRNA expression of Ca transporters but did have the lowest Pb and Cd oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 51%-95% and 52%-74% lower in comparison with the control). Lead phosphate precipitates (e.g., chloropyromorphite) were observed in feces of mice fed dietary CaHPO4. In comparison, mice fed organic Ca minerals (Ca gluconate, Ca lactate, Ca aspartate, and Ca citrate) had lower duodenal mRNA expression of Ca transporters, but Pb and Cd oral bioavailability was higher than in mice fed CaHPO4. In terms of As, mice fed Ca aspartate exhibited the lowest As oral bioavailability at the highest Ca concentration (5,000µg/g Ca; 41%-72% lower) and the lowest duodenal expression of P transporter (88% lower). The presence of aspartate was not associated with higher As solubility in the intestine. DISCUSSION: Our study used a mouse model of exposure to household dust with various concentrations and species of Ca to determine whether different Ca minerals can reduce bioavailability of Pb, Cd, and As in mice and elucidate the mechanism(s) involved. This study can contribute to the practical application of optimal Ca minerals to protect humans from Pb, Cd, and As coexposure in the environment. https://doi.org/10.1289/EHP11730.


Asunto(s)
Arsénico , Cadmio , Animales , Ratones , Humanos , Disponibilidad Biológica , Polvo , Plomo , Minerales , Gluconatos , Citratos , ARN Mensajero
12.
Environ Int ; 170: 107664, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450209

RESUMEN

Reducing lead (Pb) exposure via oral ingestion of contaminated soils is highly relevant for child health. Elevating dietary micronutrient iron (Fe) intake can reduce Pb oral bioavailability while being beneficial for child nutritional health. However, the practical performance of various Fe compounds was not assessed. Here, based on mouse bioassays, ten Fe compounds applied to diets (100-800 mg Fe kg-1) reduced Pb oral relative bioavailability (RBA) in two soils variedly depending on Fe forms. EDTA-FeNa was most efficient, which reduced Pb-RBA in a soil from 79.5 ± 14.7 % to 23.1 ± 2.72 % (71 % lower) at 100 mg Fe kg-1 in diet, more effective than other 9 compounds at equivalent or higher doses (3.6-68 % lower). When EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous bisglycinate were supplemented, Fe-Pb co-precipitation was not observed in the intestinal tract. EDTA-FeNa, ferrous gluconate, ferric citrate, and ferrous sulfate suppressed duodenal divalent metal transporter 1 (DMT1)mRNA relative expression similarly (27-68 % lower). In comparison, among ten compounds, EDTA-FeNa elevated Fe concentrations in mouse liver, kidney, and blood (1.50-2.69-fold higher) most efficiently, suggesting the most efficient Fe absorption that competed with Pb. In addition, EDTA was unique from other organic ligands, ingestion of which caused 12.0-fold higher Pb urinary excretion, decreasing Pb concentrations in mouse liver, kidney, and blood by 68-88 %. The two processes (Fe-Pb absorption competition and Pb urinary excretion with EDTA) interacted synergistically, leading to the lowest Pb absorption with EDTA-FeNa. The results provide evidence of a better inhibition of Pb absorption by EDTA-FeNa, highlighting that EDTA-FeNa may be the most appropriate supplement for intervention on human Pb exposure. Future researches are needed to assess the effectiveness of EDTA-FeNa for intervention on human Pb exposure.


Asunto(s)
Proteínas de Transporte de Catión , Suelo , Niño , Humanos , Ratones , Animales , Ácido Edético
13.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3956-3972, 2022 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-36305421

RESUMEN

To explore the mechanism of tea albino variation and high theanine formation, 'Fuyun 6' and a new theanine-rich tea cultivar 'Fuhuang 2' were as materials in this study, pigment content, metabolome and transcriptome of the two cultivars were analyzed by ultramicroelectron microscopy, widely targeted metabolomics, targeted metabolomics and transcriptomics. The results showed that five catechins, theobromine, caffeine, and 20 free amino acids, including theanine, glutamine, arginine, etc., were identified by targeted metabolomics. The amino acid content of 'Fuhuang 2' was significantly higher than that of 'Fuyun 6', and the theanine content was as high as 57.37 mg/g in 'Fuhuang 2'. The ultrastructure of leaves showed that the chloroplast cell structure of 'Fuhuang 2' was fuzzy, most of the grana lamellae were arranged in disorder, with large gaps, and the thylakoids were filiform. The determination of pigments showed that compared with 'Fuyun 6', the contents of chlorophyll A and B, carotenoids, flavonoids and other pigments of 'Fuhuang 2' decreased significantly, some important pigment-related-genes, such as chlorophyllase (CLH), 9-cis-epoxycarotenoid dioxygenase (NCED), flavonoid 3ß-hydroxylase (F3H) and flavonoid 3', 5'-hydroxylase (F3'5'H) were significantly changed. Compared with 'Fuyun 6', 'Fuhuang 2' identified 138 significantly changed metabolites (SCMs) and 658 differentially expressed genes (DEGs). KEGG enrichment analysis showed that SCMs and DEGs were significantly enriched in amino acid biosynthesis, glutathione metabolism and TCA cycle. In general, the albino phenotype of 'Fuhuang 2' may be caused by a deficiency in photosynthetic proteins, chlorophyll metabolism genes and chlorophyll content. The accumulation of high theanine in 'Fuhuang 2' may be due to the low nitrogen consumption in yellowed leaves and the lack of carbon skeleton, amino and nitrogen resources are stored more effectively, resulting in the up regulation of metabolites and related gene expression in the amino acid synthesis pathway, theanine has become a significant accumulation of nitrogen-containing compounds in yellowed leaves.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Clorofila A/análisis , Clorofila A/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/química , Clorofila/análisis , Clorofila/metabolismo , Transcriptoma , Flavonoides/análisis , Flavonoides/metabolismo , Aminoácidos/genética , , Oxigenasas de Función Mixta/metabolismo , Nitrógeno/metabolismo
15.
Sci Total Environ ; 839: 156366, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35654181

RESUMEN

To assess the health risk of nickel (Ni) in contaminated soils, studies rarely evaluated Ni bioavailability in the gastrointestinal (GI) tract, limiting the accurate regulation of contaminated sites. Here, for 15 soil samples contaminated by Ni-electroplating, Ni oral relative bioavailability (RBA, relative to NiSO4) was measured using a mouse urinary excretion bioassay. Nickel-RBA varied from 7.89% to 33.8% at an average of 19.1 ± 18.6%. The variation was not explained well by variation in soil properties including Ni speciation and co-contamination of other metals, which showed weak correlation with Ni-BRA (R2 < 0.36). In comparison, the Ni-RBA variation was explained well by the variation of soil-Ni solubility in simulated human gastric or gastrointestinal fluids, i.e., Ni bioaccessibility. Determined using the gastric (GP) and intestinal phases (IP) of solubility bioaccessibility research consortium (SBRC), physiologically based extraction test methods (PBET), and unified BARGE method (UBM), Ni bioaccessibility explained 54-71% variation of the Ni-RBA, suggesting that Ni oral bioavailability was predominantly controlled by Ni solubility in the GI tract. The results highlight the suitability of using simple, fast, and cost-effective bioaccessbility assays to predict site-specific Ni oral bioavailability.


Asunto(s)
Níquel , Contaminantes del Suelo , Bioensayo/métodos , Disponibilidad Biológica , Suelo , Contaminantes del Suelo/análisis
16.
Zhongguo Zhen Jiu ; 42(5): 533-9, 2022 May 12.
Artículo en Chino | MEDLINE | ID: mdl-35543944

RESUMEN

OBJECTIVE: To observe the effect of wheat-grain moxibustion at "Dazhui" (GV 14) on the expressions of Beclin-1 and GRP78 in spinal dorsal horn in rats with cervical spondylotic radiculopathy (CSR), and to explore the possible analgesic mechanism of wheat-grain moxibustion for CSR. METHODS: A total of 48 SD rats were randomly divided into a sham operation group, a model group, a wheat-grain moxibustion group and a wheat-grain moxibustion+3-MA group, 12 rats in each group. The CSR model was prepared by spinal cord insertion method. Three days after modeling, the rats in the model group were intraperitoneally injected with 1 mL of 0.9% sodium chloride solution; the rats in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14, 6 cones per time) on the basis of the model group; the rats in the wheat-grain moxibustion+3-MA group were intraperitoneally injected with 3-MA solution and wheat-grain moxibustion at "Dazhui" (GV 14, 6 cones per time). The three groups were intervened for 7 days, once a day. The gait score and mechanical pain threshold were observed before treatment and 7 days into treatment; after the treatment, the expressions of mRNA and protein of Beclin-1 in spinal dorsal horn were detected by real-time fluorescence quantitative PCR and immunohistochemistry; the expression of GRP78 protein in spinal dorsal horn was detected by Western blot method; the autophagosomes and ultrastructure in spinal dorsal horn neurons were observed by electron microscope. RESULTS: After the treatment, compared with the sham operation group, in the model group, the gait score was increased and the mechanical pain threshold was decreased (P<0.01), and the expression of GRP78 protein in spinal dorsal horn was increased (P<0.01). Compared with the model group and the wheat-grain moxibustion+3-MA group, in the wheat-grain moxibustion group, the gait score was decreased and mechanical pain threshold was increased (P<0.01), and the expression of GRP78 protein in spinal dorsal horn was decreased, and the expressions of mRNA and protein of Beclin-1 were increased (P<0.01). Under electron microscope, the ultrastructure of spinal dorsal horn neurons in the wheat-grain moxibustion group was not significantly damaged, and its structure was basically close to normal, and the number of autophagosomes was more than the other three groups. CONCLUSION: Wheat-grain moxibustion at "Dazhui" (GV 14) has analgesic effect on CSR rats. The mechanism may be related to moderately up-regulate the expression of Beclin-1, enhance autophagy and reduce endoplasmic reticulum stress.


Asunto(s)
Moxibustión , Radiculopatía , Espondilosis , Animales , Beclina-1/genética , Chaperón BiP del Retículo Endoplásmico , ARN Mensajero , Radiculopatía/genética , Radiculopatía/terapia , Ratas , Ratas Sprague-Dawley , Médula Espinal , Asta Dorsal de la Médula Espinal , Triticum/genética
17.
Rep Pract Oncol Radiother ; 27(1): 97-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402019

RESUMEN

Background: This study aims to explore the role of four-dimensional (4D) transperineal ultrasound (TPUS) in the contouring of prostate gland with planning computed tomography (CT) images, in the absence of magnetic resonance imaging (MRI). Materials and methods: Five radiation oncologists (ROs) performed two rounds of prostate gland contouring (single-blinded) on CT-alone and CT/TPUS datasets obtained from 10 patients who underwent TPUS-guided external beam radiotherapy. Parameters include prostate volume, DICE similarity coefficient (DSC) and centroid position. Wilcoxon signed-rank test assessed the significance of inter-modality differences, and the intraclass correlation coefficient (ICC ) reflected inter- and intra-observer reliability of parameters. Results: Inter-modality analysis revealed high agreement (based on DSC and centroid position) of prostate gland contours between CT-alone and CT/TPUS. Statistical significant difference was observed in the superior-inferior direction of the prostate centroid position (p = 0.011). All modalities yielded excellent inter-observer reliability of delineated prostate volume with ICC > 0.9, mean DSC > 0.8 and centroid position: CT-alone (ICC = 1.000) and CT/TPUS (ICC = 0.999) left-right (L/R); CT-alone (ICC = 0.999) and CT/TPUS (ICC = 0.998) anterior-posterior (A/P); CT-alone (ICC = 0.999) and CT/TPUS (ICC = 1.000) superior-inferior (S/I). Similarly, all modalities yielded excellent intra-observer reliability of delineated prostate volume, ICC > 0.9 and mean DSC > 0.8. Lastly, intra-observer reliability was excellent on both imaging modalities for the prostate centroid position, ICC > 0.9. Conclusion: TPUS does not add significantly to the amount of anatomical information provided by CT images. However, TPUS can supplement planning CT to achieve a higher positional accuracy in the S/I direction if access to CT/MRI fusion is limited.

18.
Brain Behav ; 12(4): e2545, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315239

RESUMEN

BACKGROUND: Direct moxibustion (DM) is reported to be useful for cervical spondylotic radiculopathy (CSR), but the analgesic mechanism remains unknown. Autophagy plays a protective role in neuronal apoptosis, Act A/Smads signaling pathway has been confirmed to be associated with the activation of autophagy. The study aimed to explore the effect of DM on autophagy in rats with CSR and the involvement of Act A/Smads signaling pathway. METHODS: Rats were randomly divided into Sham, CSR, CSR + DM, CSR + DM + 3-MA (PI3K inhibitor), and CSR + DM + SB (Act A inhibitor) group. Three days after establishment of CSR model with a fish line inserted under the axilla of the nerve roots, DM at Dazhui (GV14) was performed six times once for seven consecutive days. Western blot and immunofluorescence staining were used to observe the expression of the neuronal autophagy molecule LC3II/I, Atg7, and Act A/Smads signaling molecule Act A, p-Smad2, and p-Smad3. Bcl-2/Bax mRNA expression was measured by real time PCR. RESULTS: DM improved the pain threshold and motor function of CSR rats and promoted the expression of Act A, p-Smad2, p-Smad3, LC3II/I, and Atg7 in the entrapped-nerve root spinal dorsal horn. DM reduced the expression of Bax mRNA and decreased the number of apoptotic neurons. 3-MA and Act A inhibitor SB suppressed the expression of above-mentioned proteins and reduced the protective effect of DM on apoptotic neurons. CONCLUSION: DM exerts analgesic effects by regulating the autophagy to reduce cell apoptosis and repair nerve injury, and this feature may be related to the Act A/Smads signaling pathway.


Asunto(s)
Moxibustión , Radiculopatía , Espondilosis , Animales , Autofagia , Fosfatidilinositol 3-Quinasas , ARN Mensajero , Radiculopatía/genética , Radiculopatía/terapia , Ratas , Transducción de Señal , Proteína X Asociada a bcl-2
19.
Zhen Ci Yan Jiu ; 47(3): 244-9, 2022 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-35319842

RESUMEN

OBJECTIVE: To observe the effect of mild moxibustion (Moxi) at "Dazhui" (GV14) on neuropathic pain, expression of autophagy and apoptosis factor LC3 and Bax proteins and mRNAs in the spinal cord tissue in rats with cervical spondylotic radiculopathy (CSR), so as to explore its underlying mechanism underlying relief of CSR-induced pain. METHODS: Forty rats (half male half female) were randomly divided into blank control, model, Moxi, Moxi+autophagy inhibitor 3-methyladenine (3-MA, Moxi+3-MA) groups, with 10 rats in each group. The CSR model was established by loose ligature of the local cervical nerve roots. Three days after modeling, mild Moxi was applied to GV14 for 10 min, once daily for 7 days. Rats of the Moxi+3-MA group received intraperitoneal injection of 3-MA(1 mL, 15 mg/kg+ saline) before Moxi, once daily for 7 consecutive days. Rats of the model and Moxi groups were also given normal saline (i.p., 1 mL), once daily for 7 days. The gait behavior score (1-3 points) was scaled according to the rats' pain reaction and foot paw contracture produced walking disorder and the mechanical pain threshold (MPT) was detected before and after the treatment. The expression of spinal cord LC3 and Bax proteins and mRNAs were detected by immunohistochemistry and quantitative RT-PCR, respectively. RESULTS: Compared with the blank control group, the gait disorder score, and percentage of Bax positive cells and expression of Bax mRNA were significantly increased (P<0.01, P<0.05), and MPT was markedly decreased in the model group (P<0.01). After the treatment, the gait disorder score, percentage of Bax positive cells and Bax mRNA expression were significantly down-regulated (P<0.01, P<0.05), while the MPT and percentage of LC3 positive cells and LC3 mRNA expression were considerably increased (P<0.01, P<0.05) in both Moxi and Moxi+3-MA groups. The therapeutic effects of mild Moxi were remarkably superior to those of Moxi+3-MA in downregulating gait disorder score, Bax positive cell percentage and Bax mRNA expression, and in up-regulating MPT, LC3 positive cell percentage and LC3 mRNA expression (P<0.05), suggesting a reduction of the function of mild Moxi after administration of 3-MA. CONCLUSION: Mild Moxi at GV14 can relieve neuropathic pain in CSR rats, which may be related to its functions in up-regulating LC3 autophagy, thereby inhibiting the expression of Bax pro-apoptotic protein in spinal cord to reduce apoptosis and to repair nerve injury.


Asunto(s)
Moxibustión , Neuralgia , Radiculopatía , Animales , Femenino , Masculino , Proteínas Asociadas a Microtúbulos/genética , Radiculopatía/genética , Radiculopatía/terapia , Ratas , Ratas Sprague-Dawley , Médula Espinal , Proteína X Asociada a bcl-2/genética
20.
J Sci Food Agric ; 102(9): 3730-3741, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34919290

RESUMEN

BACKGROUND: Lipids are one of the most important bioactive compounds, affecting the character and quality of tea. However, the contribution of lipids to tea productions is still elusive. Here, we systematically identified the lipid profiles of green, oolong, and black teas in purple-leaf tea (Jinmingzao, JMZ) and green-leaf tea (Huangdan, HD), respectively. RESULTS: The lipids analysis showed regular accumulation in tea products with different manufacturing processes, among which the fatty acids, glycerolipids, glycerophospholipids, and sphingolipids contribute to the quality characteristics of tea products, including typical fatty acyl (FA), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerols (DGDG), and phosphatidylcholine (PC). Compared tea materials with products, levels of fatty acids were up-regulated, while glycerolipids and glycerophospholipids were down-regulated in tea products. FA 18:3, FA 16:0, MGDG 36:6, DGDG 36:6, PC 34:3, and PC 36:6 were the negative contributors to green tea flavor formation of purple-leaf tea. The pathway analysis of significant lipids in materials and products of purple-leaf tea were enriched linolenic acid metabolism pathway and glycerolipid metabolism. CONCLUSION: This study provides insights into the lipid metabolism profiles of different tea leaf colors, and found that fatty acids are essential precursors of black tea flavor formation. © 2021 Society of Chemical Industry.


Asunto(s)
Lipidómica , Hojas de la Planta , Ácidos Grasos/análisis , Glicerofosfolípidos/metabolismo , Hojas de la Planta/química , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA