Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Am Chem Soc ; 146(14): 10115-10123, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554100

RESUMEN

Hydrogen fluoride (HF) is a versatile reagent for material transformation, with applications in self-immolative polymers, remodeled siloxanes, and degradable polymers. The responsive in situ generation of HF in materials therefore holds promise for new classes of adaptive material systems. Here, we report the mechanochemically coupled generation of HF from alkoxy-gem-difluorocyclopropane (gDFC) mechanophores derived from the addition of difluorocarbene to enol ethers. Production of HF involves an initial mechanochemically assisted rearrangement of gDFC mechanophore to α-fluoro allyl ether whose regiochemistry involves preferential migration of fluoride to the alkoxy-substituted carbon, and ab initio steered molecular dynamics simulations reproduce the observed selectivity and offer insights into the mechanism. When the alkoxy gDFC mechanophore is derived from poly(dihydrofuran), the α-fluoro allyl ether undergoes subsequent hydrolysis to generate 1 equiv of HF and cleave the polymer chain. The hydrolysis is accelerated via acid catalysis, leading to self-amplifying HF generation and concomitant polymer degradation. The mechanically generated HF can be used in combination with fluoride indicators to generate an optical response and to degrade polybutadiene with embedded HF-cleavable silyl ethers (11 mol %). The alkoxy-gDFC mechanophore thus provides a mechanically coupled mechanism of releasing HF for polymer remodeling pathways that complements previous thermally driven mechanisms.

2.
J Am Chem Soc ; 146(6): 3920-3925, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308653

RESUMEN

The spiropyran mechanophore (SP) is employed as a reporter of molecular tension in a wide range of polymer matrices, but the influence of surrounding environment on the force-coupled kinetics of its ring opening has not been quantified. Here, we report single-molecule force spectroscopy studies of SP ring opening in five solvents that span normalized Reichardt solvent polarity factors (ETN) of 0.1-0.59. Individual multimechanophore polymers were activated under increasing tension at constant 300 nm s-1 displacement in an atomic force microscope. The extension results in a plateau in the force-extension curve, whose midpoint occurs at a transition force f* that corresponds to the force required to increase the rate constant of SP activation to approximately 30 s-1. More polar solvents lead to mechanochemical reactions that are easier to trigger; f* decreases across the series of solvents, from a high of 415 ± 13 pN in toluene to a low of 234 ± 9 pN in n-butanol. The trend in mechanochemical reactivity is consistent with the developing zwitterionic character on going from SP to the ring-opened merocyanine product. The force dependence of the rate constant (Δx‡) was calculated for all solvent cases and found to increase with ETN, which is interpreted to reflect a shift in the transition state to a later and more productlike position. The inferred shift in the transition state position is consistent with a double-well (two-step) reaction potential energy surface, in which the second step is rate determining, and the intermediate is more polar than the product.

3.
J Am Chem Soc ; 146(5): 2876-2881, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38265762

RESUMEN

Polymers that amplify a transient external stimulus into changes in their morphology, physical state, or properties continue to be desirable targets for a range of applications. Here, we report a polymer comprising an acid-sensitive, hydrolytically unstable enol ether backbone onto which is embedded gem-dichlorocyclopropane (gDCC) mechanophores through a single postsynthetic modification. The gDCC mechanophore releases HCl in response to large forces of tension along the polymer backbone, and the acid subsequently catalyzes polymer deconstruction at the enol ether sites. Pulsed sonication of a 61 kDa PDHF with 77% gDCC on the backbone in THF with 100 mM H2O for 10 min triggers the subsequent degradation of the polymer to a final molecular weight of less than 3 kDa after 24 h of standing, whereas controls lacking either the gDCC or the enol ether reach final molecular weights of 38 and 27 kDa, respectively. The process of sonication, along with the presence of water and the existence of gDCC on the backbone, significantly accelerates the rate of polymer chain deconstruction. Both acid generation and the resulting triggered polymer deconstruction are translated to bulk, cross-linked polymer networks. Networks formed via thiol-ene cross-linking and subjected to unconstrained quasi-static uniaxial compression dissolve on time scales that are at least 3 times faster than controls where the mechanophore is not covalently coupled to the network. We anticipate that this concept can be extended to other acid-sensitive polymer networks for the stress-responsive deconstruction of gels and solvent-free elastomers.

4.
J Am Chem Soc ; 145(42): 23214-23226, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37821455

RESUMEN

Stimulus-responsive gating of chemical reactions is of considerable practical and conceptual interest. For example, photocleavable protective groups and gating mechanophores allow the kinetics of purely thermally activated reactions to be controlled optically or by mechanical load by inducing the release of small-molecule reactants. Such release only in response to a sequential application of both stimuli (photomechanochemical gating) has not been demonstrated despite its unique expected benefits. Here, we describe computational and experimental evidence that coumarin dimers are highly promising moieties for realizing photomechanochemical control of small-molecule release. Such dimers are transparent and photochemically inert at wavelengths >300 nm but can be made to dissociate rapidly under tensile force. The resulting coumarins are mechanochemically and thermally stable, but rapidly release their payload upon irradiation. Our DFT calculations reveal that both strain-free and mechanochemical kinetics of dimer dissociation are highly tunable over an unusually broad range of rates by simple substitution. In head-to-head dimers, the phenyl groups act as molecular levers to allow systematic and predictable variation in the force sensitivity of the dissociation barriers by choice of the pulling axis. As a proof-of-concept, we synthesized and characterized the reactivity of one such dimer for photomechanochemically controlled release of aniline and its application for controlling bulk gelation.

5.
Chem Sci ; 14(34): 9207-9212, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37655017

RESUMEN

Morphing in creatures has inspired various synthetic polymer materials that are capable of shape shifting. The morphing of polymers generally relies on stimuli-active (typically heat and light active) units that fix the shape after a mechanical load-based shape programming. Herein, we report a strategy that uses a mechanochemically active 2,2'-bis(2-phenylindan-1,3-dione) (BPID) mechanophore as a switching unit for mechanochemical morphing. The mechanical load on the polymer triggers the dissociation of the BPID moiety into stable 2-phenylindan-1,3-dione (PID) radicals, whose subsequent spontaneous dimerization regenerates BPID and fixes the temporary shapes that can be effectively recovered to the permanent shapes by heating. A greater extent of BPID activation, through a higher BPID content or mechanical load, leads to higher mechanochemical shape fixity. By contrast, a relatively mechanochemically less active hexaarylbiimidazole (HABI) mechanophore shows a lower fixing efficiency when subjected to the same programing conditions. Another control system without a mechanophore shows a low fixing efficiency comparable to the HABI system. Additionally, the introduction of the BPID moiety also manifests remarkable mechanochromic behavior during the shape programing process, offering a visualizable indicator for the pre-evaluation of morphing efficiency. Unlike conventional mechanical mechanisms that simultaneously induce morphing, such as strain-induced plastic deformation or crystallization, our mechanochemical method allows for shape programming after the mechanical treatment. Our concept has potential for the design of mechanochemically programmable and mechanoresponsive shape shifting polymers.

6.
J Am Chem Soc ; 144(8): 3717-3726, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179880

RESUMEN

Transient electronics are a rapidly emerging field due to their potential applications in the environment and human health. Recently, a few studies have incorporated acid-labile imine bonds into polymer semiconductors to impart transience; however, understanding of the structure-degradation property relationships of these polymers is limited. In this study, we systematically design and characterize a series of fully degradable diketopyrrolopyrrole-based polymers with engineered sidechains to investigate the impact of several molecular design parameters on the degradation lifetimes of these polymers. By monitoring degradation kinetics via ultraviolet-visible spectroscopy, we reveal that polymer degradation in solution is aggregation-dependent based on the branching point and Mn, with accelerated degradation rates facilitated by decreasing aggregation. Additionally, increasing the hydrophilicity of the polymers promotes water diffusion and therefore acid hydrolysis of the imine bonds along the polymer backbone. The aggregation properties and degradation lifetimes of these polymers rely heavily on solvent, with polymers in chlorobenzene taking six times as long to degrade as in chloroform. We develop a new method for quantifying the degradation of polymers in the thin film and observe that similar factors and considerations (e.g., interchain order, crystallite size, and hydrophilicity) used for designing high-performance semiconductors impact the degradation of imine-based polymer semiconductors. We found that terpolymerization serves as an attractive approach for achieving degradable semiconductors with both good charge transport and tuned degradation properties. This study provides crucial principles for the molecular design of degradable semiconducting polymers, and we anticipate that these findings will expedite progress toward transient electronics with controlled lifetimes.


Asunto(s)
Iminas , Polímeros , Electrónica , Humanos , Polímeros/química , Semiconductores
8.
J Am Chem Soc ; 143(30): 11679-11689, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34284578

RESUMEN

Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.

9.
Adv Sci (Weinh) ; 8(14): e2101233, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34014619

RESUMEN

Through advances in molecular design, understanding of processing parameters, and development of non-traditional device fabrication techniques, the field of wearable and implantable skin-inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human- and environmentally-friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real-life applications. Then, various strategies in designing the next-generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Electrónica/métodos , Polímeros/química , Polímeros/uso terapéutico , Prótesis e Implantes , Humanos
10.
ACS Macro Lett ; 10(10): 1186-1190, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35549045

RESUMEN

Here, we report the fabrication of a dynamic enamine-one bond based vitrimer through amino-yne click chemistry. In contrast to amine-acetoacetate condensation, the amino-yne click reaction yields a dynamic enamine-one motif that is composed of cis/trans (3:1) isomers and has a relatively lower activation energy (35 ± 3 kJ/mol vs 59 ± 6 kJ/mol), owing to the absence of a methyl substituent. The resulting vitrimer network has superior mechanical properties and faster dynamic exchange than that of a reference vitrimer derived from amine-acetoacetate condensation, and they are attributed to the fewer network defects and the less sterically hindered exchange reaction, respectively. Lastly, the efficient amino-yne click reaction is demonstrated to be compatible with the secondary-amine substrate, which has a low reactivity toward the amine-acetoacetate condensation. The efficient and side product-free amino-yne reaction offers a powerful chemical tool for vitrimer fabrication and is potentially desirable for sealing and adhesion applications.


Asunto(s)
Acetoacetatos , Química Clic , Aminas/química , Química Clic/métodos
11.
Nat Chem ; 13(1): 56-62, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33349695

RESUMEN

Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand 'peeling', as opposed to the more conventional 'shearing' mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers.

12.
Macromol Rapid Commun ; 42(1): e2000449, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33089596

RESUMEN

The molecular processes that accompany dynamic mechanical response to large deformations at high strain rate (≈1000 s-1 or higher) underlie the early stages of damage in materials, but understanding of material response in this regime is typically limited to macroscopic constitutive equations. Here, spiropyran mechanophores are embedded in very short, stress-bearing strands in silicone elastomers, and their mechanochromic response to uniaxial compression is explored in a Split Hopkinson Pressure (or Kolsky) Bar. At strain rates of 1000 s-1 , the onset of mechanochromism occurs at lower strains, but higher stresses, than in the same materials under quasi-static loading. Similar to quasi-static loading, however, a negligible effect of mechanophore structure on the critical strain for colorimetric onset is observed. The results suggest that nonequilibrium, inhomogeneous local tension distributions in the elastomers lead to greater stress in individual strands than at the same strains under equilibrium loading, but that within the regions of force concentration, mechanochromic onset is determined primarily by a limiting local strain threshold.


Asunto(s)
Elastómeros de Silicona , Benzopiranos , Indoles , Ensayo de Materiales , Nitrocompuestos , Presión , Estrés Mecánico
13.
Nat Commun ; 11(1): 4987, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020488

RESUMEN

The mechanical degradation of polymers is typically limited to a single chain scission per triggering chain stretching event, and the loss of stress transfer that results from the scission limits the extent of degradation that can be achieved. Here, we report that the mechanically triggered ring-opening of a [4.2.0]bicyclooctene (BCOE) mechanophore sets up a delayed, force-free cascade lactonization that results in chain scission. Delayed chain scission allows many eventual scission events to be initiated within a single polymer chain. Ultrasonication of a 120 kDa BCOE copolymer mechanically remodels the polymer backbone, and subsequent lactonization slowly (~days) degrades the molecular weight to 4.4 kDa, > 10× smaller than control polymers in which lactonization is blocked. The force-coupled kinetics of ring-opening are probed by single molecule force spectroscopy, and mechanical degradation in the bulk is demonstrated. Delayed scission offers a strategy to enhanced mechanical degradation and programmed obsolescence in structural polymeric materials.

14.
J Am Chem Soc ; 142(5): 2105-2109, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31939656

RESUMEN

Degradable polymers are desirable for the replacement of conventional organic polymers that persist in the environment, but they often suffer from the unintentional scission of the degradable functionalities on the polymer backbone, which diminishes polymer properties during storage and regular use. Herein, we report a strategy that combats unintended degradation in polymers by combining two common degradation stimuli-mechanical and acid triggers-in an "AND gate" fashion. A cyclobutane (CB) mechanophore is used as a mechanical gate to regulate an acid-sensitive ketal that has been widely employed in acid degradable polymers. This gated ketal is further incorporated into the polymer backbone. In the presence of an acid trigger alone, the pristine polymer retains its backbone integrity, and delivering high mechanical forces alone by ultrasonication degrades the polymer to an apparent limiting molecular weight of 28 kDa. The sequential treatment of ultrasonication followed by acid, however, leads to a further 11-fold decrease in molecular weight to 2.5 kDa. Experimental and computational evidence further indicate that the ungated ketal possesses mechanical strength that is commensurate with the conventional polymer backbones. Single molecule force spectroscopy (SMFS) reveals that the force necessary to activate the CB molecular gate on the time scale of 100 ms is approximately 2 nN.

15.
Chem Sci ; 11(38): 10444-10448, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34094302

RESUMEN

The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness. Methods by which the intrinsic molecular strength of the constituents of a given polymeric material might be switched are therefore potentially useful both for applications in which triggered property changes are desirable, and as tests of molecular theories for bulk behaviors. Here we report that the sequential oxidation of sulfide containing polyesters (PE-S) to the corresponding sulfoxide (PE-SO) and then sulfone (PE-SO2) first weakens (sulfoxide), and then enhances (sulfone), the effective mechanical integrity of the polymer backbone; PE-S ∼ PE-SO2 > PE-SO. The relative mechanical strength as a function of oxidation state is revealed through the use of gem-dichlorocyclopropane nonscissile mechanophores as an internal standard, and the observed order agrees well with the reported bond dissociation energies of C-S bonds in each species and with the results of CoGEF modeling.

16.
J Am Chem Soc ; 142(1): 99-103, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31875388

RESUMEN

Mechanically coupled proton transduction offers potential for stress-responsive polymeric materials whose properties can be switched via acid-triggered coloration, polymerization/cross-linking, or degradation. The utility of currently available mechanoacids, however, is limited by modest force-free stability or a scissile response that caps mechanoacid generation at one proton per strained polymer chain. Here, we report a new mechanoacid based on 2-methoxy-substituted gem-dichlorocyclopropane (MeO-gDCC). Pulsed ultrasonication leads to the mechanochemical ring opening of the MeO-gDCC and the subsequent elimination of either HCl or MeCl, with ∼0.58 equiv of HCl released per mechanophore activation and ∼67 protons per chain scission event. Single-molecule force spectroscopy reveals that the methoxy substituent lowers the force required for rapid (kopen ∼102 s-1) ring opening to ca. 900 pN, vs 1300 pN required for the parent gDCC. The utility of the mechanoacid is demonstrated in silicone elastomers, where its mechanical activation leads to a strain-triggered color change prior to fracture of the elastomer. The postactivation kinetics of coloration are used to demonstrate a new concept in mechanochromism, namely, a spectroscopic indicator of not only whether and where a mechanical event has occurred but when it occurred.

17.
J Phys Chem B ; 123(40): 8492-8498, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31525921

RESUMEN

The cis-to-trans isomerization of azobenzene is accelerated in a bulk PDMS elastomer under uniaxial tension. The kinetics are cleanly described by a single-exponential first-order process (k = 2.7 × 10-5 s-1) in the absence of tension but become multiexponential under constant strains of 40-90%. The complex kinetics can be reasonably modeled as a two-component process. The majority (∼92%) process is slower and occurs with a rate constant that is similar to that of the unstrained system (k = 2.3-2.7 × 10-5 s-1), whereas the rate constant of the minority (∼8%) process increases from k = 10.1 × 10-5 s-1 at 40% strain to k = 21.3 × 10-5 s-1 at 90% strain. Simple models of expected force-rate relationships suggest that the average force of tension per strand in the minority component ranges from 28 to 44 pN across strains of 40-90%.

18.
J Am Chem Soc ; 141(28): 10943-10947, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31283207

RESUMEN

Cyclic polymers containing multiple gem-dichlorocyclopropane (gDCC) mechanophores along their backbone were prepared using ring expansion metathesis polymerization. The mechanochemistry of the cyclic polymers was investigated using pulsed ultrasonication. The fraction of gDCC mechanophores that are activated per chain halving event (Φ) was compared to that of linear analogs. For 167 kDa cyclic polymer, Φ = 0.38, vs Φ = 0.62 for 158 kDa linear polymers analogs, even though cyclic chain fragmentation necessarily proceeds through a linear intermediate of comparable composition to the initially linear systems. Ozonolysis of the mechanochemical products further shows that the mechanochemical "activation zone" in the cyclic polymer is less continuous than in the linear polymer. These results suggest that the linear intermediate in cyclic polymer fragmentation undergoes subsequent scission during the same high strain rate extensional event in which it is formed and furthermore retains at least a partial memory of its original cyclic conformation at the time of fragmentation.

19.
J Am Chem Soc ; 140(46): 15969-15975, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30403483

RESUMEN

Mechanochromic force probes, including spiropyran derivatives, have proven to be useful in visualizing the stress/strain distribution and fracture behavior in polymeric materials. Here, we report the macroscopic response of silicone elastomers including cross-links made up of three spiropyran (SP) regioisomers. The SP derivatives SP( o), SP( m), and SP( p) are connected to the network through an identical attachment point on the indoline fragment and regioisomeric attachments ortho, meta, and para to the spirocyclic C-O bond on the benzaldehyde fragment, respectively. The relative colorimetric response of these regioisomers under quasi-static uniaxial tensile load is SP( o) > SP( m) > SP( p), consistent with the expected mechanical sensitivity of the regioisomers obtained from molecular modeling. The extrapolated strain onset for detectable activation of all three regioisomers, however, is indistinguishable and occurs at ∼90% uniaxial strain. Finally, the ratiometric response of the three isomers is constant across the strains investigated (90-135% uniaxial strain), in contrast to expectations based on simulations of strained intact polymer networks.

20.
J Am Chem Soc ; 140(40): 12746-12750, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30260221

RESUMEN

We report the effect of substituents on the force-induced reactivity of a spiropyran mechanophore. Using single molecule force spectroscopy, force-rate behavior was determined for a series of spiropyran derivatives substituted with H, Br, or NO2 para to the breaking spirocyclic C-O bond. The force required to achieve the rate constants of ∼10 s-1 necessary to observe transitions in the force spectroscopy experiments depends on the substituent, with the more electron withdrawing substituent requiring less force. Rate constants at 375 pN were determined for all three derivatives, and the force-coupled rate dependence on substituent identity is well explained by a Hammett linear free energy relationship with a value of ρ = 2.9, consistent with a highly polar transition state with heterolytic, dissociative character. The methodology paves the way for further application of linear free energy relationships and physical organic methodologies to mechanochemical reactions, and the characterization of new force probes should enable additional, quantitative studies of force-coupled molecular behavior in polymeric materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA