Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062858

RESUMEN

Sleep deprivation (SD) is a recognized risk factor for atrial fibrillation (AF), yet the precise molecular and electrophysiological mechanisms behind SD-induced AF are unclear. This study explores the electrical and structural changes that contribute to AF in chronic partial SD. We induced chronic partial SD in Wistar rats using a modified multiple-platform method. Echocardiography demonstrated impaired systolic and diastolic function in the left ventricle (LV) of the SD rats. The SD rats exhibited an elevated heart rate and a higher low-frequency to high-frequency ratio in a heart-rate variability analysis. Rapid transesophageal atrial pacing led to a higher incidence of AF and longer mean AF durations in the SD rats. Conventional microelectrode recordings showed accelerated pulmonary vein (PV) spontaneous activity in SD rats, along with a heightened occurrence of delayed after-depolarizations in the PV and left atrium (LA) induced by tachypacing and isoproterenol. A Western blot analysis showed reduced expression of G protein-coupled receptor kinase 2 (GRK2) in the LA of the SD rats. Chronic partial SD impairs LV function, promotes AF genesis, and increases PV and LA arrhythmogenesis, potentially attributed to sympathetic overactivity and reduced GRK2 expression. Targeting GRK2 signaling may offer promising therapeutic avenues for managing chronic partial SD-induced AF. Future investigations are mandatory to investigate the dose-response relationship between SD and AF genesis.


Asunto(s)
Fibrilación Atrial , Modelos Animales de Enfermedad , Atrios Cardíacos , Venas Pulmonares , Ratas Wistar , Privación de Sueño , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/metabolismo , Ratas , Privación de Sueño/complicaciones , Privación de Sueño/fisiopatología , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Masculino , Frecuencia Cardíaca , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Incidencia
2.
Acta Cardiol Sin ; 40(4): 451-453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045380
3.
Cardiol Rev ; 32(4): 314-319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848534

RESUMEN

Several vaccines against coronavirus disease 2019 (COVID-19)-caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-have been developed since the COVID-19 pandemic began. Of these, 7 have been approved in the World Health Organization's Emergency Use Listing. However, these vaccines have been reported to have rare or serious adverse cardiovascular effects. This review presents updated information on the adverse cardiovascular effects of the approved COVID-19 vaccines-including inactivated vaccines, protein subunit vaccines, virus-like particles, nucleic acid vaccines, and viral vector vaccines-and the underlying mechanisms.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Enfermedades Cardiovasculares , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , COVID-19/epidemiología , Enfermedades Cardiovasculares/prevención & control , SARS-CoV-2
4.
Eur J Pharmacol ; 977: 176675, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38825303

RESUMEN

BACKGROUND: Ibrutinib, a Bruton's tyrosine kinase inhibitor used in cancer therapy, exerts ventricular proarrhythmic effects; however, the underlying mechanisms remain unclear. Excitation-contraction coupling (E-C) disorders are pivotal for the genesis of ventricular arrhythmias (VAs), which arise mainly from the right ventricular outflow tract (RVOT). In this study, we aimed to comprehensively investigate whether ibrutinib regulates the electromechanical activities of the RVOT, leading to enhanced arrhythmogenesis, and explore the underlying mechanisms. METHODS: We utilized conventional microelectrodes to synchronously record electrical and mechanical responses in rabbit RVOT tissue preparations before and after treatment with ibrutinib (10, 50, and 100 nM) and investigated their electromechanical interactions and arrhythmogenesis during programmed electrical stimulation. The fluorometric ratio technique was used to measure intracellular calcium concentration in isolated RVOT myocytes. RESULTS: Ibrutinib (10-100 nM) shortened the action potential duration. Ibrutinib at 100 nM significantly increased pacing-induced ventricular tachycardia (VT) (from 0% to 62.5%, n = 8, p = 0.025). Comparisons between pacing-induced VT and non-VT episodes demonstrated that VT episodes had a greater increase in contractility than that of non-VT episodes (402.1 ± 41.4% vs. 232.4 ± 29.2%, p = 0.003). The pretreatment of ranolazine (10 µM, a late sodium current blocker) prevented the occurrence of ibrutinib-induced VAs. Ibrutinib (100 nM) increased late sodium current, reduced intracellular calcium transients, and enhanced calcium leakage in RVOT myocytes. CONCLUSION: Ibrutinib increased the risk of VAs in the RVOT due to dysregulated electromechanical responses, which can be attenuated by ranolazine or apamin.


Asunto(s)
Potenciales de Acción , Adenina , Agammaglobulinemia Tirosina Quinasa , Piperidinas , Inhibidores de Proteínas Quinasas , Animales , Piperidinas/farmacología , Conejos , Adenina/análogos & derivados , Adenina/farmacología , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/efectos adversos , Potenciales de Acción/efectos de los fármacos , Pirimidinas/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Masculino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Taquicardia Ventricular/fisiopatología , Pirazoles/farmacología , Acoplamiento Excitación-Contracción/efectos de los fármacos
5.
Pacing Clin Electrophysiol ; 47(6): 843-852, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38630938

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common sustained atrial arrhythmia. Accurate detection of the timing and possibility of AF termination is vital for optimizing rhythm and rate control strategies. The present study evaluated whether the ventricular response (VR) in AF offers a distinctive electrocardiographic indicator for predicting AF termination. METHODS: Patients experiencing sustained paroxysmal AF for more than 3 h were observed using 24-h ambulatory Holter monitoring. VR within 5 min before AF termination (VR 0-5 min, BAFT) was compared with VR observed during the 60th to 65th min (VR 60-65 min, BAFT) and the 120th to 125th min (VR 120-125 min, BAFT) before AF termination. Maximum and minimum VRs were calculated on the basis of the average of the highest and lowest VRs across 10 consecutive heartbeats. RESULTS: Data from 37 episodes of paroxysmal AF revealed that the minimum VR0-5 min, BAFT (64 ± 20 bpm) was significantly faster than both the minimum VR120-125 min, BAFT (56 ± 15 bpm) and the minimum VR60-65 min, BAFT (57 ± 16 bpm, p < .05). Similarly, the maximum VR0-5 min, BAFT (158 ± 49 bpm) was significantly faster than the maximum VR120-125 min, BAFT (148 ± 45 bpm, p < .05). In the daytime, the minimum VR0-5 min, BAFT (66 ± 20 bpm) was significantly faster than both the minimum VR60-65 min, BAFT (58 ± 17 bpm) and minimum VR120-125 min, BAFT (57 ± 15 bpm, p < .05). However, the mean and maximum VR0-5 min, BAFT in the daytime were similar to the mean and maximum VR120-125 min in the daytime, respectively. At night, the minimum, mean, and maximum VR0-5 min, BAFT were similar to the minimum, mean, and maximum VR120-125 min, respectively. CONCLUSIONS: Elevated VR rates during AF episodes may be predictors for the termination of AF, especially during the daytime and in patients with nondilated left atria. These findings may guide the development of clinical approaches to rhythm control in AF.


Asunto(s)
Fibrilación Atrial , Electrocardiografía Ambulatoria , Humanos , Fibrilación Atrial/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Valor Predictivo de las Pruebas
6.
J Biomed Sci ; 31(1): 42, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650023

RESUMEN

BACKGROUND: Myocarditis substantially increases the risk of ventricular arrhythmia. Approximately 30% of all ventricular arrhythmia cases in patients with myocarditis originate from the right ventricular outflow tract (RVOT). However, the role of NLRP3 signaling in RVOT arrhythmogenesis remains unclear. METHODS: Rats with myosin peptide-induced myocarditis (experimental group) were treated with an NLRP3 inhibitor (MCC950; 10 mg/kg, daily for 14 days) or left untreated. Then, they were subjected to electrocardiography and echocardiography. Ventricular tissue samples were collected from each rat's RVOT, right ventricular apex (RVA), and left ventricle (LV) and examined through conventional microelectrode and histopathologic analyses. In addition, whole-cell patch-clamp recording, confocal fluorescence microscopy, and Western blotting were performed to evaluate ionic currents, intracellular Ca2+ transients, and Ca2+-modulated protein expression in individual myocytes isolated from the RVOTs. RESULTS: The LV ejection fraction was lower and premature ventricular contraction frequency was higher in the experimental group than in the control group (rats not exposed to myosin peptide). Myocarditis increased the infiltration of inflammatory cells into cardiac tissue and upregulated the expression of NLRP3; these observations were more prominent in the RVOT and RVA than in the LV. Furthermore, experimental rats treated with MCC950 (treatment group) improved their LV ejection fraction and reduced the frequency of premature ventricular contraction. Histopathological analysis revealed higher incidence of abnormal automaticity and pacing-induced ventricular tachycardia in the RVOTs of the experimental group than in those of the control and treatment groups. However, the incidences of these conditions in the RVA and LV were similar across the groups. The RVOT myocytes of the experimental group exhibited lower Ca2+ levels in the sarcoplasmic reticulum, smaller intracellular Ca2+ transients, lower L-type Ca2+ currents, larger late Na+ currents, larger Na+-Ca2+ exchanger currents, higher reactive oxygen species levels, and higher Ca2+/calmodulin-dependent protein kinase II levels than did those of the control and treatment groups. CONCLUSION: Myocarditis may increase the rate of RVOT arrhythmogenesis, possibly through electrical and structural remodeling. These changes may be mitigated by inhibiting NLRP3 signaling.


Asunto(s)
Arritmias Cardíacas , Miocarditis , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Ratas , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Furanos/farmacología , Indenos , Miocarditis/metabolismo , Miocarditis/fisiopatología , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología
7.
Fundam Clin Pharmacol ; 38(2): 262-275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37664898

RESUMEN

BACKGROUND: Metabolic stress predisposes to ventricular arrhythmias and sudden cardiac death. Right ventricular outflow tract (RVOT) is the common origin of ventricular arrhythmias. Adenosine monophosphate-regulated protein kinase (AMPK) activation is an important compensatory mechanism for cardiac remodeling during metabolic stress. OBJECTIVES: The purpose of this study was to access whether AMPK inhibition would modulate RVOT electrophysiology, calcium (Ca2+ ) regulation, and RVOT arrhythmogenesis or not. METHODS: Conventional microelectrodes were used to record electrical activity before and after compound C (10 µM, an AMPK inhibitor) in isoproterenol (1 µM)-treated rabbit RVOT tissue preparations under electrical pacing. Whole-cell patch-clamp and confocal microscopic examinations were performed in baseline and compound C-treated rabbit RVOT cardiomyocytes to investigate ionic currents and intracellular Ca2+ transients in isolated rabbit RVOT cardiomyocytes. RESULTS: Compound C decreased RVOT contractility, and reversed isoproterenol increased RVOT contractility. Compound C decreased the incidence, rate, and duration of isoproterenol-induced RVOT burst firing under rapid pacing. Compared to baseline, compound C-treated RVOT cardiomyocytes had a longer action potential duration, smaller intracellular Ca2+ transients, late sodium (Na+ ), peak L-type Ca2+ current density, Na+ -Ca2+ exchanger, transient outward potassium (K+ ) current, and rapid and slow delayed rectifier K+ currents. CONCLUSION: AMPK inhibition modulates RVOT electrophysiological characteristics and Ca2+ homeostasis, contributing to lower RVOT arrhythmogenic activity. Accordingly, AMPK inhibition might potentially reduce ventricular tachyarrhythmias.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Calcio , Animales , Conejos , Calcio/metabolismo , Adenosina Monofosfato , Isoproterenol/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Homeostasis , Potenciales de Acción
8.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685906

RESUMEN

Glucagon-like peptide-1 (GLP-1) receptor agonists are associated with reduced atrial fibrillation risk, but the mechanisms underlying this association remain unclear. The GLP-1 receptor agonist directly impacts cardiac Ca2+ homeostasis, which is crucial in pulmonary vein (PV, the initiator of atrial fibrillation) arrhythmogenesis. This study investigated the effects of the GLP-1 receptor agonist on PV electrophysiology and Ca2+ homeostasis and elucidated the potential underlying mechanisms. Conventional microelectrodes and whole-cell patch clamp techniques were employed in rabbit PV tissues and single PV cardiomyocytes before and after GLP-1 (7-36) amide, a GLP-1 receptor agonist. Evaluations were conducted both with and without pretreatment with H89 (10 µM, an inhibitor of protein kinase A, PKA), KN93 (1 µM, an inhibitor of Ca2+/calmodulin-dependent protein kinase II, CaMKII), and KB-R7943 (10 µM, an inhibitor of Na+/Ca2+ exchanger, NCX). Results showed that GLP-1 (7-36) amide (at concentrations of 1, 10, and 100 nM) reduced PV spontaneous activity in a concentration-dependent manner without affecting sinoatrial node electrical activity. In single-cell experiments, GLP-1 (7-36) amide (at 10 nM) reduced L-type Ca2+ current, NCX current, and late Na+ current in PV cardiomyocytes without altering Na+ current. Additionally, GLP-1 (7-36) amide (at 10 nM) increased sarcoplasmic reticulum Ca2+ content in PV cardiomyocytes. Furthermore, the antiarrhythmic effects of GLP-1 (7-36) amide on PV automaticity were diminished when pretreated with H89, KN93, or KB-R7943. This suggests that the GLP-1 receptor agonist may exert its antiarrhythmic potential by regulating PKA, CaMKII, and NCX activity, as well as modulating intracellular Ca2+ homeostasis, thereby reducing PV arrhythmogenesis.


Asunto(s)
Fibrilación Atrial , Conservadores de la Densidad Ósea , Venas Pulmonares , Animales , Conejos , Receptor del Péptido 1 Similar al Glucagón , Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Antagonistas de Hormonas , Antiarrítmicos , Amidas , Proteínas Quinasas Dependientes de AMP Cíclico , Péptido 1 Similar al Glucagón/farmacología , Homeostasis
9.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37511554

RESUMEN

The right ventricular outflow tract (RVOT) is the major origin of ventricular arrhythmias, including premature ventricular contractions, idiopathic ventricular arrhythmias, Brugada syndrome, torsade de pointes, long QT syndrome, and arrhythmogenic right ventricular cardiomyopathy. The RVOT has distinct developmental origins and cellular characteristics and a complex myocardial architecture with high shear wall stress, which may lead to its high vulnerability to arrhythmogenesis. RVOT myocytes are vulnerable to intracellular sodium and calcium overload due to calcium handling protein modulation, enhanced CaMKII activity, ryanodine receptor phosphorylation, and a higher cAMP level activated by predisposing factors or pathological conditions. A reduction in Cx43 and Scn5a expression may lead to electrical uncoupling in RVOT. The purpose of this review is to update the current understanding of the cellular and molecular mechanisms of RVOT arrhythmogenesis.


Asunto(s)
Síndrome de Brugada , Taquicardia Ventricular , Humanos , Calcio/metabolismo , Arritmias Cardíacas , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Electrocardiografía
10.
Cardiovasc Diabetol ; 22(1): 27, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747205

RESUMEN

BACKGROUND: The novel sodium-glucose co-transporter 2 inhibitor (SGLT2i) potentially ameliorates heart failure and reduces cardiac arrhythmia. Cardiac fibrosis plays a pivotal role in the pathophysiology of HF and atrial myopathy, but the effect of SGLT2i on fibrogenesis remains to be elucidated. This study investigated whether SGLT2i directly modulates fibroblast activities and its underlying mechanisms. METHODS AND RESULTS: Migration, proliferation analyses, intracellular pH assay, intracellular inositol triphosphate (IP3) assay, Ca2+ fluorescence imaging, and Western blotting were applied to human atrial fibroblasts. Empagliflozin (an SGLT2i, 1, or 5 µmol/L) reduced migration capability and collagen type I, and III production. Compared with control cells, empagliflozin (1 µmol/L)- treated atrial fibroblasts exhibited lower endoplasmic reticulum (ER) Ca2+ leakage, Ca2+ entry, inositol trisphosphate (IP3), lower expression of phosphorylated phospholipase C (PLC), and lower intracellular pH. In the presence of cariporide (an Na+-H+ exchanger (NHE) inhibitor, 10 µmol/L), control and empagliflozin (1 µmol/L)-treated atrial fibroblasts revealed similar intracellular pH, ER Ca2+ leakage, Ca2+ entry, phosphorylated PLC, pro-collagen type I, type III protein expression, and migration capability. Moreover, empagliflozin (10 mg/kg/day orally for 28 consecutive days) significantly increased left ventricle systolic function, ß-hydroxybutyrate and decreased atrial fibrosis, in isoproterenol (100 mg/kg, subcutaneous injection)-induced HF rats. CONCLUSIONS: By inhibiting NHE, empagliflozin decreases the expression of phosphorylated PLC and IP3 production, thereby reducing ER Ca2+ release, extracellular Ca2+ entry and the profibrotic activities of atrial fibroblasts.


Asunto(s)
Fibrilación Atrial , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratas , Humanos , Animales , Calcio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Colágeno Tipo I/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Homeostasis
11.
J Chin Med Assoc ; 86(5): 472-478, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800262

RESUMEN

BACKGROUND: Propafenone is a class IC antiarrhythmic agent that is commonly used as the first-line therapy for patients with paroxysmal atrial fibrillation (AF) in Taiwan. This study compared the efficacy and safety of generic (Rhynorm) and brand name (Rytmonorm) propafenone for rhythm control of paroxysmal AF in Taiwan. METHODS: This was an open-label randomized multicenter noninferior study conducted in Taiwan. We enrolled 76 patients with AF. To investigate the efficacy of propafenone, we used a wearable electrocardiogram (ECG) event recorder to evaluate the daily burden of AF episodes in patients for 24 weeks. The primary efficacy endpoint was the frequency of AF with clinical significance, which was indicated by AF duration ≥30 seconds. The safety endpoints included proarrhythmic or hemodynamic adverse events. RESULT: To analyze the efficacy and safety of these agents, 71 patients (five patients with screen failure) were randomized to two groups, specifically a Rhynorm group (n = 37) and a Rytmonorm group (n = 34), for 24 weeks of the treatment period. The baseline patient characteristics were comparable between the groups. However, the Rhynorm group was older (65.4 ± 8.40 vs 59.8 ± 10.8 years; p = 0.02). The primary efficacy endpoint at week 24 decreased by 4.76% ± 18.5% (from 24.3% ± 33.9% to 19.0% ± 28.7%; p = 0.13) in the Rhynorm group and by 3.27% ± 15.2% (from 16.9% ± 26.4% to 13.6% ± 19.2%; p = 0.22) in the Rytmonorm group, with an intergroup difference of 1.5% ± 17.0%; p = 0.71. This finding indicates that Rhynorm is not inferior to Rytmonorm ( p = 0.023 for noninferiority). The safety profile of the agents was comparable between the two groups. CONCLUSION: Our results verified that Rhynorm was noninferior to Rytmonorm in terms of efficacy and safety for treating paroxysmal AF in Taiwan ( ClinicalTrials.gov Identifier: NCT03674658).


Asunto(s)
Fibrilación Atrial , Propafenona , Humanos , Propafenona/uso terapéutico , Antiarrítmicos/efectos adversos , Electrocardiografía , Taiwán , Resultado del Tratamiento
12.
Eur J Pharmacol ; 941: 175493, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621600

RESUMEN

BACKGROUND: Excitation-contraction (E-C) coupling, the interaction of action potential duration (APD) and contractility, plays an essential role in arrhythmogenesis. We aimed to investigate the arrhythmogenic role of E-C coupling in the right ventricular outflow tract (RVOT) in the chloroquine-induced long QT syndrome. METHODS: Conventional microelectrodes were used to record electrical and mechanical activity simultaneously under electrical pacing (cycle lengths from 1000-100 ms) in rabbit RVOT tissue preparations before and after chloroquine with and without azithromycin. KB-R7943 (a Na+-Ca2+ exchanger [NCX] inhibitor), ranolazine (a late sodium current inhibitor), or MgSO4 were used to assess their pharmacological responses in the chloroquine-induced long QT syndrome. RESULTS: Sequential infusion of chloroquine and chloroquine plus azithromycin triggered ventricular tachycardia (VT) (33.7%) after rapid pacing compared to baseline (6.7%, p = 0.004). There were greater post-pacing increases of the first occurrence of contractility (ΔContractility) in the VT group (VT vs. non-VT: 521.2 ± 50.5% vs. 306.5 ± 26.8%, p < 0.001). There was no difference in the first occurrence of action potential at 90% repolarization (ΔAPD90) (VT vs. non-VT: 49.7 ± 7.4 ms vs. 51.8 ± 13.1 ms, p = 0.914). Pacing-induced VT could be suppressed to baseline levels by KB-R7943 or MgSO4. Ranolazine did not suppress pacing-induced VT in chloroquine-treated RVOT. ΔContractility was reduced by KB-R7943 and MgSO4, but not by ranolazine. CONCLUSION: ΔContractility (but not ΔAPD) played a crucial role in the genesis of pacing-induced VT in the long QT tissue model, which can be modulated by NCX (but not late sodium current) inhibition or MgSO4.


Asunto(s)
Síndrome de QT Prolongado , Taquicardia Ventricular , Animales , Conejos , Ranolazina/farmacología , Ranolazina/uso terapéutico , Potenciales de Acción/fisiología , Azitromicina/efectos adversos , Arritmias Cardíacas , Síndrome de QT Prolongado/inducido químicamente , Taquicardia Ventricular/tratamiento farmacológico , Sodio
13.
Europace ; 25(2): 698-706, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36056883

RESUMEN

AIMS: Macrophage migration inhibitory factor (MIF), a pleiotropic inflammatory cytokine, is highly expressed in patients with atrial fibrillation (AF). Inflammation increases the risk of AF and is primarily triggered by pulmonary vein (PV) arrhythmogenesis. This study investigated whether MIF can modulate the electrical activity of the PV and examined the underlying mechanisms of MIF. METHODS AND RESULTS: A conventional microelectrode, a whole-cell patch clamp, western blotting, and immunofluorescent confocal microscopy were used to investigate electrical activity, calcium (Ca2+) regulation, protein expression, ionic currents, and cytosolic reactive oxygen species (ROS) in rabbit PV tissue and isolated single cardiomyocytes with and without MIF incubation (100 ng/mL, treated for 6 h). The MIF (100 ng/mL)-treated PV tissue (n = 8) demonstrated a faster beating rate (1.8 ± 0.2 vs. 2.6 ± 0.1 Hz, P < 0.05), higher incidence of triggered activity (12.5 vs. 100%, P < 0.05), and premature atrial beat (0 vs. 100%, P < 0.05) than the control PV tissue (n = 8). Compared with the control PV cardiomyocytes, MIF-treated single PV cardiomyocytes had larger Ca2+ transients (0.6 ± 0.1 vs. 1.0 ± 0.1, ΔF/F0, P < 0.05), sarcoplasmic reticulum Ca2+ content (0.9 ± 0.20 vs. 1.7 ± 0.3 mM of cytosol, P < 0.05), and cytosolic ROS (146.8 ± 5.3 vs. 163.7 ± 3.8, ΔF/F0, P < 0.05). Moreover, MIF-treated PV cardiomyocytes exhibited larger late sodium currents (INa-Late), L-type Ca2+ currents, and Na+/Ca2+ exchanger currents than the control PV cardiomyocytes. KN93 [a selective calcium/calmodulin-dependent protein kinase II (CaMKII) blocker, 1 µM], ranolazine (an INa-Late inhibitor, 10 µM), and N-(mercaptopropionyl) glycine (ROS inhibitor, 10 mM) reduced the beating rates and the incidence of triggered activity and premature captures in the MIF-treated PV tissue. CONCLUSION: Macrophage migration inhibitory factor increased PV arrhythmogenesis through Na+ and Ca2+ dysregulation through the ROS activation of CaMKII signalling, which may contribute to the genesis of AF during inflammation. Anti-CaMKII treatment may reverse PV arrhythmogenesis. Our results clearly reveal a key link between MIF and AF and offer a viable therapeutic target for AF treatment.


Asunto(s)
Fibrilación Atrial , Factores Inhibidores de la Migración de Macrófagos , Venas Pulmonares , Animales , Conejos , Calcio/metabolismo , Sodio/metabolismo , Factores Inhibidores de la Migración de Macrófagos/farmacología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potenciales de Acción , Miocitos Cardíacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo
14.
Biomedicines ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359250

RESUMEN

Lithium intoxication induces Brugada-pattern ECG, ventricular arrhythmia, and sudden death with the predominant preference for the male over the female gender. This study investigated the mechanisms of gender difference in lithium-induced arrhythmogenesis. The ECG parameters were recorded in male and female rabbits before and after the intravenous administration of lithium chloride (LiCl) (1, 3, 10 mmol/kg). Patch clamps were used to study the sodium current (INa) and late sodium current (INa-late) in the isolated single male and female right ventricular outflow tract (RVOT) cardiomyocytes before and after LiCl. Male rabbits (n = 9) were more prone to developing lithium-induced Brugada-pattern ECG changes (incomplete right bundle branch block, ST elevation and QRS widening) with fatal arrhythmia (66.7% vs. 0%, p = 0.002) than in female (n = 7) rabbits at 10 mmol/kg (but not 1 or 3 mmol/kg). Compared to those in the female RVOT cardiomyocytes, LiCl (100 µM) reduced INa to a greater extent and increased INa-late in the male RVOT cardiomyocytes. Moreover, in the presence of ranolazine (the INa-late inhibitor, 3.6 mg/kg iv loading, followed by a second iv bolus 6.0 mg/kg administered 30 min later, n = 5), LiCl (10 mmol/kg) did not induce Brugada-pattern ECG changes (p < 0.005). The male gender is much predisposed to lithium-induced Brugada-pattern ECG changes with a greater impact on INa and INa-late in RVOT cardiomyocytes. Targeting INa-late may be a potential therapeutic strategy for Brugada syndrome-related ventricular tachyarrhythmia.

15.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430541

RESUMEN

Adrenomedullin, a peptide with vasodilatory, natriuretic, and diuretic effects, may be a novel agent for treating heart failure. Heart failure is associated with an increased risk of atrial fibrillation (AF), but the effects of adrenomedullin on atrial arrhythmogenesis remain unclear. This study investigated whether adrenomedullin modulates the electrophysiology of the atria (AF substrate) or pulmonary vein (PV; AF trigger) arrhythmogenesis. Conventional microelectrode or whole-cell patch clamps were used to study the effects of adrenomedullin (10, 30, and 100 pg/mL) on the electrical activity, mechanical response, and ionic currents of isolated rabbit PV and sinoatrial node tissue preparations and single PV cardiomyocytes. At 30 and 100 pg/mL, adrenomedullin significantly reduced the spontaneous beating rate of the PVs from 2.0 ± 0.4 to 1.3 ± 0.5 and 1.1 ± 0.5 Hz (reductions of 32.9% ± 7.1% and 44.9 ± 8.4%), respectively, and reduced PV diastolic tension by 12.8% ± 4.1% and 14.5% ± 4.1%, respectively. By contrast, adrenomedullin did not affect sinoatrial node beating. In the presence of L-NAME (a nitric oxide synthesis inhibitor, 100 µM), adrenomedullin (30 pg/mL) did not affect the spontaneous beating rate or diastolic tension of the PVs. In the single-cell experiments, adrenomedullin (30 pg/mL) significantly reduced the L-type calcium current (ICa-L) and reverse-mode current of the sodium-calcium exchanger (NCX). Adrenomedullin reduces spontaneous PV activity and PV diastolic tension by reducing ICa-L and NCX current and thus may be useful for treating atrial tachyarrhythmia.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Venas Pulmonares , Animales , Conejos , Adrenomedulina/farmacología , Atrios Cardíacos
16.
Exp Ther Med ; 24(6): 720, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36340605

RESUMEN

Mirabegron increases atrial fibrillation (AF) risk. The left atrium (LA) is the most critical 'substrate' for AF and has higher arrhythmogenesis compared with the right atrium (RA). The present study aimed to investigate the electrophysiological and arrhythmogenic effects of mirabegron on the LA and RA and clarify the potential underlying mechanisms. Conventional microelectrodes, a whole-cell patch clamp and a confocal microscope were used in rabbit LA and RA preparations or single LA and RA myocytes before and after mirabegron administration with or without cotreatment with KT5823 [a cyclic adenosine monophosphate (cAMP)-dependent protein kinase inhibitor]. The baseline action potential duration at repolarization extents of 20 and 50% (but not 90%) were shorter in the LA than in the RA. Mirabegron at 0.1 and 1 µM (but not 0.01 µM) reduced the action potential duration at repolarization extents of 20 and 50% in the LA and RA. Mirabegron (0.1 µM) increased the occurrence of tachypacing-induced burst firing in the LA but not in the RA, where it was suppressed by KT5823 (1 µM). Mirabegron (0.1 µM) increased the L-type Ca2+ current (ICa-L), ultrarapid component of delayed rectifier K+ current (IKur), Ca2+ transients and sarcoplasmic reticulum Ca2+ content but reduced transient outward K+ current (Ito) in the LA myocytes. However, mirabegron did not change the Na+ current and delayed rectifier K+ current in the LA myocytes. Moreover, pretreatment with KT5823 (1 µM) inhibited the effects of mirabegron on ICa-L, Ito and IKur in the LA myocytes. Furthermore, in the RA myocytes, mirabegron reduced ICa-L but did not change Ito. In conclusion, mirabegron differentially regulates electrophysiological characteristics in the LA and RA. Through the activation of the cAMP-dependent protein kinase pathway and induction of Ca2+ dysregulation, mirabegron may increase LA arrhythmogenesis, leading to increased AF risk.

17.
Physiol Rep ; 10(21): e15499, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36325589

RESUMEN

Diabetes mellitus is associated with cardiovascular disease and cardiac arrhythmia. Accumulation of advanced glycation end products closely correlates with cardiovascular complications through mitochondrial dysfunction or oxidative stress and evoke proliferative, inflammatory, and fibrotic reactions, which might impair cardiac electrophysiological characteristics and increase the incidence of cardiac arrhythmia. This study examined the mechanisms how advanced glycation end products may contribute to arrhythmogenesis of right ventricular outflow tract-a unique arrhythmogenic substrate. A whole-cell patch clamp, conventional electrophysiological study, fluorescence imaging, Western blot, and confocal microscope were used to study the electrical activity, and Ca2+ homeostasis or signaling in isolated right ventricular outflow tract myocytes with and without advanced glycation end products (100 µg/ml). The advanced glycation end products treated right ventricular outflow tract myocytes had a similar action potential duration as the controls, but exhibited a lower L-type Ca2+ current, higher late sodium current and transient outward current. Moreover, the advanced glycation end products treated right ventricular outflow tract myocytes had more intracellular Na+ , reverse mode Na+ -Ca2+ exchanger currents, intracellular and mitochondrial reactive oxygen species, and less intracellular Ca2+ transient and sarcoplasmic reticulum Ca2+ content with upregulated calcium homeostasis proteins and advanced glycation end products related signaling pathway proteins. In conclusions, advanced glycation end products modulate right ventricular outflow tract electrophysiological characteristics with larger late sodium current, intracellular Na+ , reverse mode Na+ -Ca2+ exchanger currents, and disturbed Ca2+ homeostasis through increased oxidative stress mediated by the activation of the advanced glycation end products signaling pathway.


Asunto(s)
Diabetes Mellitus , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Arritmias Cardíacas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Potenciales de Acción/fisiología , Sodio/metabolismo , Diabetes Mellitus/metabolismo , Calcio/metabolismo
18.
Cells ; 11(18)2022 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36139490

RESUMEN

Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.


Asunto(s)
Fibrilación Atrial , Diabetes Mellitus , Metabolismo Energético , Humanos
20.
J Chin Med Assoc ; 85(7): 804-807, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648143

RESUMEN

Pre-excitation syndrome can either mimic or mask myocardial infarction, making the diagnosis of acute myocardial infarction difficult. Herein, we report the case of a male patient with Wolf-Parkinson-White (WPW) syndrome who presented to our emergency department with severe chest pain. Non-ST-elevation myocardial infarction was suspected because of cardiac enzyme elevation and abnormal ST-T changes identified through electrocardiography. The patient underwent percutaneous coronary intervention; a left anterior descending artery stenotic lesion was dilated, and drug-eluting stents were implanted. One month later, he underwent successful radiofrequency catheter ablation for his accessory pathway and tachycardia. We present the series of electrocardiographic ST-T abnormalities to raise awareness of the value of diagnosing myocardial injury early in patients with WPW syndrome.


Asunto(s)
Stents Liberadores de Fármacos , Infarto del Miocardio , Intervención Coronaria Percutánea , Síndrome de Wolff-Parkinson-White , Angiografía Coronaria , Electrocardiografía , Humanos , Masculino , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Síndrome de Wolff-Parkinson-White/diagnóstico , Síndrome de Wolff-Parkinson-White/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA