Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Schizophr Bull ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824450

RESUMEN

BACKGROUND: Sensory suppression occurs when hearing one's self-generated voice, as opposed to passively listening to one's own voice. Quality changes in sensory feedback to the self-generated voice can increase attentional control. These changes affect the self-other voice distinction and might lead to hearing voices in the absence of an external source (ie, auditory verbal hallucinations). However, it is unclear how changes in sensory feedback processing and attention allocation interact and how this interaction might relate to hallucination proneness (HP). STUDY DESIGN: Participants varying in HP self-generated (via a button-press) and passively listened to their voice that varied in emotional quality and certainty of recognition-100% neutral, 60%-40% neutral-angry, 50%-50% neutral-angry, 40%-60% neutral-angry, 100% angry, during electroencephalography (EEG) recordings. STUDY RESULTS: The N1 auditory evoked potential was more suppressed for self-generated than externally generated voices. Increased HP was associated with (1) an increased N1 response to the self- compared with externally generated voices, (2) a reduced N1 response for angry compared with neutral voices, and (3) a reduced N2 response to unexpected voice quality in sensory feedback (60%-40% neutral-angry) compared with neutral voices. CONCLUSIONS: The current study highlights an association between increased HP and systematic changes in the emotional quality and certainty in sensory feedback processing (N1) and attentional control (N2) in self-voice production in a nonclinical population. Considering that voice hearers also display these changes, these findings support the continuum hypothesis.

2.
Clin Neurol Neurosurg ; 241: 108311, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38704879

RESUMEN

BACKGROUND: Neurological complications in COVID-19 patients admitted to an intensive care unit (ICU) have been previously reported. As the pandemic progressed, therapeutic strategies were tailored to new insights. This study describes the incidence, outcome, and types of reported neurological complications in invasively mechanically ventilated (IMV) COVID-19 patients in relation to three periods during the pandemic. METHODS: IMV COVID-19 ICU patients from the Dutch Maastricht Intensive Care COVID (MaastrICCht) cohort were included in a single-center study (March 2020 - October 2021). Demographic, clinical, and follow-up data were collected. Electronic medical records were screened for neurological complications during hospitalization. Three distinct periods (P1, P2, P3) were defined, corresponding to periods with high hospitalization rates. ICU survivors with and without reported neurological complications were compared in an exploratory analysis. RESULTS: IMV COVID-19 ICU patients (n=324; median age 64 [IQR 57-72] years; 238 males (73.5%)) were stratified into P1 (n=94), P2 (n=138), and P3 (n=92). ICU mortality did not significantly change over time (P1=38.3%; P2=41.3%; P3=37.0%; p=.787). The incidence of reported neurological complications during ICU admission gradually decreased over the periods (P1=29.8%; P2=24.6%; P3=18.5%; p=.028). Encephalopathy/delirium (48/324 (14.8%)) and ICU-acquired weakness (32/324 (9.9%)) were most frequently reported and associated with ICU treatment intensity. ICU survivors with neurological complications (n=53) were older (p=.025), predominantly male (p=.037), and had a longer duration of IMV (p<.001) and ICU stay (p<.001), compared to survivors without neurological complications (n=132). A multivariable analysis revealed that only age was independently associated with the occurrence of neurological complications (ORadj=1.0541; 95% CI=1.0171-1.0925; p=.004). Health-related quality-of-life at follow-up was not significantly different between survivors with and without neurological complications (n = 82, p=.054). CONCLUSIONS: A high but decreasing incidence of neurological complications was reported during three consecutive COVID-19 periods in IMV COVID-19 patients. Neurological complications were related to the intensity of ICU support and treatment, and associated with prolonged ICU stay, but did not lead to significantly worse reported health-related quality-of-life at follow-up.


Asunto(s)
COVID-19 , Unidades de Cuidados Intensivos , Enfermedades del Sistema Nervioso , Respiración Artificial , Humanos , COVID-19/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Incidencia , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/epidemiología , Estudios de Cohortes , Países Bajos/epidemiología , Mortalidad Hospitalaria , SARS-CoV-2
3.
J Neurosci Methods ; 407: 110138, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648892

RESUMEN

BACKGROUND: Resting state (RS) brain activity is inherently non-stationary. Hidden semi-Markov Models (HsMM) can characterize continuous RS data as a sequence of recurring and distinct brain states along with their spatio-temporal dynamics. NEW METHOD: Recent explorations suggest that HsMM state dynamics in the alpha frequency band link to auditory hallucination proneness (HP) in non-clinical individuals. The present study aimed to replicate these findings to elucidate robust neural correlates of hallucinatory vulnerability. Specifically, we aimed to investigate the reproducibility of HsMM states across different data sets and within-data set variants as well as the replicability of the association between alpha brain state dynamics and HP. RESULTS: We found that most brain states are reproducible in different data sets, confirming that the HsMM characterized robust and generalizable EEG RS dynamics on a sub-second timescale. Brain state topographies and temporal dynamics of different within-data set variants showed substantial similarities and were robust against reduced data length and number of electrodes. However, the association with HP was not directly reproducible across data sets. COMPARISON WITH EXISTING METHODS: The HsMM optimally leverages the high temporal resolution of EEG data and overcomes time-domain restrictions of other state allocation methods. CONCLUSION: The results indicate that the sensitivity of brain state dynamics to capture individual variability in HP may depend on the data recording characteristics and individual variability in RS cognition, such as mind wandering. Future studies should consider that the order in which eyes-open and eyes-closed RS data are acquired directly influences an individual's attentional state and generation of spontaneous thoughts, and thereby might mediate the link to hallucinatory vulnerability.


Asunto(s)
Ritmo alfa , Alucinaciones , Humanos , Ritmo alfa/fisiología , Alucinaciones/fisiopatología , Adulto , Masculino , Femenino , Electroencefalografía/métodos , Adulto Joven , Encéfalo/fisiología , Descanso/fisiología , Reproducibilidad de los Resultados
5.
World J Biol Psychiatry ; 25(4): 222-232, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38493363

RESUMEN

OBJECTIVES: Schizophrenia genetics is intricate, with common and rare variants' contributions not fully understood. Certain copy number variations (CNVs) elevate risk, pivotal for understanding mental disorder models. Despite CNVs' genome-wide distribution and variable gene and protein effects, we must explore beyond affected genes to interaction partners and molecular pathways. METHODS: In this study, we developed machine-readable interactive pathways to enable analysis of functional effects of genes within CNV loci and identify ten common pathways across CNVs with high schizophrenia risk using the WikiPathways database, schizophrenia risk gene collections from GWAS studies, and a gene-disease association database. RESULTS: For CNVs that are pathogenic for schizophrenia, we found overlapping pathways, including BDNF signalling, cytoskeleton, and inflammation. Common schizophrenia risk genes identified by different studies are found in all CNV pathways, but not enriched. CONCLUSIONS: Our findings suggest that specific pathways - BDNF signalling - are critical contributors to schizophrenia risk conferred by rare CNVs. Our approach highlights the importance of not only investigating deleted or duplicated genes within pathogenic CNV loci, but also study their direct interaction partners, which may explain pleiotropic effects of CNVs on schizophrenia risk and offer a broader field for interventions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Variaciones en el Número de Copia de ADN , Esquizofrenia , Transducción de Señal , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Esquizofrenia/genética , Transducción de Señal/genética
6.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531844

RESUMEN

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Humanos , Lateralidad Funcional , Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética
7.
Cell Rep ; 43(3): 113946, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483902

RESUMEN

The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRß), while compound deletion of LXRß in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastorno Autístico , Humanos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Variaciones en el Número de Copia de ADN , Trastorno Autístico/genética , Células Madre/metabolismo , Neurogénesis
8.
Psychopharmacology (Berl) ; 241(3): 627-635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38363344

RESUMEN

RATIONALE: Although the study of emotions can look back to over 100 years of research, it is unclear which information the brain uses to construct the subjective experience of an emotion. OBJECTIVE: In the current study, we assess the role of the peripheral and central adrenergic system in this respect. METHODS: Healthy volunteers underwent a double inhalation of 35% CO2, which is a well-validated procedure to induce an intense emotion, namely panic. In a randomized, cross-over design, 34 participants received either a ß1-blocker acting selectively in the peripheral nervous system (atenolol), a ß1-blocker acting in the peripheral and central nervous system (metoprolol), or a placebo before the CO2 inhalation. RESULTS: Heart rate and systolic blood pressure were reduced in both ß-blocker conditions compared to placebo, showing effective inhibition of the adrenergic tone. Nevertheless, the subjective experience of the induced panic was the same in all conditions, as measured by self-reported fear, discomfort, and panic symptom ratings. CONCLUSIONS: These results indicate that information from the peripheral and central adrenergic system does not play a major role in the construction of the subjective emotion.


Asunto(s)
Antagonistas Adrenérgicos beta , Dióxido de Carbono , Emociones , Sistema Nervioso , Pánico , Humanos , Antagonistas Adrenérgicos beta/farmacología , Dióxido de Carbono/farmacología , Emociones/efectos de los fármacos , Emociones/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Pánico/efectos de los fármacos , Pánico/fisiología , Sistema Nervioso/efectos de los fármacos
9.
J Mov Disord ; 17(2): 181-188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379425

RESUMEN

OBJECTIVE: Huntington's disease (HD) is an autosomal dominant, fully penetrant, neurodegenerative disease that most commonly affects middle-aged adults. HD is caused by a CAG repeat expansion in the HTT gene, resulting in the expression of mutant huntingtin (mHTT). Our aim was to detect and quantify mHTT in tear fluid, which, to our knowledge, has never been measured before. METHODS: We recruited 20 manifest and 13 premanifest HD gene expansion carriers, and 20 age-matched controls. All patients underwent detailed assessments, including the Unified Huntington's Disease Rating Scale (UHDRS) total motor score (TMS) and total functional capacity (TFC) score. Tear fluid was collected using paper Schirmer's strips. The level of tear mHTT was determined using single-molecule counting SMCxPRO technology. RESULTS: The average tear mHTT levels in manifest (67,223 ± 80,360 fM) and premanifest patients (55,561 ± 45,931 fM) were significantly higher than those in controls (1,622 ± 2,179 fM). We noted significant correlations between tear mHTT levels and CAG repeat length, "estimated years to diagnosis," disease burden score and UHDRS TMS and TFC. The receiver operating curve demonstrated an almost perfect score (area under the curve [AUC] = 0.9975) when comparing controls to manifest patients. Similarly, the AUC between controls and premanifest patients was 0.9846. The optimal cutoff value for distinguishing between controls and manifest patients was 4,544 fM, whereas it was 6,596 fM for distinguishing between controls and premanifest patients. CONCLUSION: Tear mHTT has potential for early and noninvasive detection of alterations in HD patients and could be integrated into both clinical trials and clinical diagnostics.

10.
Sci Rep ; 14(1): 1084, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212349

RESUMEN

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/psicología , Benchmarking , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
11.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224541

RESUMEN

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Femenino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Trastornos Psicóticos/complicaciones , Sustancia Gris/diagnóstico por imagen
12.
Brain Sci ; 14(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38248277

RESUMEN

In population-based cohort studies, magnetic resonance imaging (MRI) is vital for examining brain structure and function. Advanced MRI techniques, such as diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-fMRI), provide insights into brain connectivity. However, biases in MRI data acquisition and processing can impact brain connectivity measures and their associations with demographic and clinical variables. This study, conducted with 5110 participants from The Maastricht Study, explored the relationship between brain connectivity and various image quality metrics (e.g., signal-to-noise ratio, head motion, and atlas-template mismatches) that were obtained from dMRI and rs-fMRI scans. Results revealed that in particular increased head motion (R2 up to 0.169, p < 0.001) and reduced signal-to-noise ratio (R2 up to 0.013, p < 0.001) negatively impacted structural and functional brain connectivity, respectively. These image quality metrics significantly affected associations of overall brain connectivity with age (up to -59%), sex (up to -25%), and body mass index (BMI) (up to +14%). Associations with diabetes status, educational level, history of cardiovascular disease, and white matter hyperintensities were generally less affected. This emphasizes the potential confounding effects of image quality in large population-based neuroimaging studies on brain connectivity and underscores the importance of accounting for it.

13.
Neuropsychopharmacology ; 49(2): 368-376, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37402765

RESUMEN

Although many genetic risk factors for psychiatric and neurodevelopmental disorders have been identified, the neurobiological route from genetic risk to neuropsychiatric outcome remains unclear. 22q11.2 deletion syndrome (22q11.2DS) is a copy number variant (CNV) syndrome associated with high rates of neurodevelopmental and psychiatric disorders including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia. Alterations in neural integration and cortical connectivity have been linked to the spectrum of neuropsychiatric disorders seen in 22q11.2DS and may be a mechanism by which the CNV acts to increase risk. In this study, magnetoencephalography (MEG) was used to investigate electrophysiological markers of local and global network function in 34 children with 22q11.2DS and 25 controls aged 10-17 years old. Resting-state oscillatory activity and functional connectivity across six frequency bands were compared between groups. Regression analyses were used to explore the relationships between these measures, neurodevelopmental symptoms and IQ. Children with 22q11.2DS had altered network activity and connectivity in high and low frequency bands, reflecting modified local and long-range cortical circuitry. Alpha and theta band connectivity were negatively associated with ASD symptoms while frontal high frequency (gamma band) activity was positively associated with ASD symptoms. Alpha band activity was positively associated with cognitive ability. These findings suggest that haploinsufficiency at the 22q11.2 locus impacts short and long-range cortical circuits, which could be a mechanism underlying neurodevelopmental and psychiatric vulnerability in this high-risk group.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Síndrome de DiGeorge , Niño , Humanos , Adolescente , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/genética , Cognición , Factores de Riesgo
14.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38086346

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Encéfalo , Trastornos Mentales/terapia , Enfermedad de Parkinson/terapia
15.
Br J Psychiatry ; 224(2): 66-73, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37993980

RESUMEN

BACKGROUND: Late-life depression has been associated with volume changes of the hippocampus. However, little is known about its association with specific hippocampal subfields over time. AIMS: We investigated whether hippocampal subfield volumes were associated with prevalence, course and incidence of depressive symptoms. METHOD: We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1-weighted and fluid-attenuated inversion recovery 3T magnetic resonance images. Depressive symptoms were assessed at baseline and annually over 7 years of follow-up (9-item Patient Health Questionnaire). We used negative binominal, logistic, and Cox regression analyses, corrected for multiple comparisons, and adjusted for demographic, cardiovascular and lifestyle factors. RESULTS: A total of n = 4174 participants were included (mean age 60.0 years, s.d. = 8.6, 51.8% female). Larger right hippocampal fissure volume was associated with prevalent depressive symptoms (odds ratio (OR) = 1.26, 95% CI 1.08-1.48). Larger bilateral hippocampal fissure (OR = 1.37-1.40, 95% CI 1.14-1.71), larger right molecular layer (OR = 1.51, 95% CI 1.14-2.00) and smaller right cornu ammonis (CA)3 volumes (OR = 0.61, 95% CI 0.48-0.79) were associated with prevalent depressive symptoms with a chronic course. No associations of hippocampal subfield volumes with incident depressive symptoms were found. Yet, lower left hippocampal amygdala transition area (HATA) volume was associated with incident depressive symptoms with chronic course (hazard ratio = 0.70, 95% CI 0.55-0.89). CONCLUSIONS: Differences in hippocampal fissure, molecular layer and CA volumes might co-occur or follow the onset of depressive symptoms, in particular with a chronic course. Smaller HATA was associated with an increased risk of incident (chronic) depression. Our results could capture a biological foundation for the development of chronic depressive symptoms, and stresses the need to discriminate subtypes of depression to unravel its biological underpinnings.


Asunto(s)
Depresión , Hipocampo , Humanos , Femenino , Persona de Mediana Edad , Masculino , Incidencia , Prevalencia , Hipocampo/patología , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos , Tamaño de los Órganos
16.
Pain ; 165(3): 500-522, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851343

RESUMEN

ABSTRACT: Habituation to pain is a fundamental learning process and important adaption. Yet, a comprehensive review of the current state of the field is lacking. Through a systematic search, 63 studies were included. Results address habituation to pain in healthy individuals based on self-report, electroencephalography, or functional magnetic resonance imaging. Our findings indicate a large variety in methods, experimental settings, and contexts, making habituation a ubiquitous phenomenon. Habituation to pain based on self-report studies shows a large influence of expectations, as well as the presence of individual differences. Furthermore, widespread neural effects, with sometimes opposing effects in self-report measures, are noted. Electroencephalography studies showed habituation of the N2-P2 amplitude, whereas functional magnetic resonance imaging studies showed decreasing activity during painful repeated stimulation in several identified brain areas (cingulate cortex and somatosensory cortices). Important considerations for the use of terminology, methodology, statistics, and individual differences are discussed. This review will aid our understanding of habituation to pain in healthy individuals and may lead the way to improving methods and designs for personalized treatment approaches in chronic pain patients.


Asunto(s)
Habituación Psicofisiológica , Dolor , Humanos , Habituación Psicofisiológica/fisiología , Autoinforme , Electroencefalografía , Imagen por Resonancia Magnética
17.
J Pain ; 25(3): 730-741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921732

RESUMEN

The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.


Asunto(s)
Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Neuropatía de Fibras Pequeñas/diagnóstico , Neuralgia/diagnóstico por imagen , Neuralgia/genética , Neuralgia/complicaciones , Imagen por Resonancia Magnética , Giro del Cíngulo , Canal de Sodio Activado por Voltaje NAV1.7/genética
18.
Mol Psychiatry ; 28(9): 3688-3697, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37903876

RESUMEN

Psychotic experiences (PEs) occur in 5-10% of the general population and are associated with exposure to childhood trauma and obstetric complications. However, the neurobiological mechanisms underlying these associations are unclear. Using the Avon Longitudinal Study of Parents and Children (ALSPAC), we studied 138 young people aged 20 with PEs (n = 49 suspected, n = 53 definite, n = 36 psychotic disorder) and 275 controls. Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk. PEs were associated with smaller left posterior cingulate (pFWE < 0.001, Z = 4.19) and thalamus volumes (pFWE = 0.006, Z = 3.91). Cumulative pre/perinatal risk was associated with smaller left subgenual cingulate volume (pFWE < 0.001, Z = 4.54). A significant interaction between PEs and cumulative pre/perinatal risk found larger striatum (pFWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus (pFWE = 0.002, Z = 4.79), specifically in those with definite PEs and psychotic disorder. Cumulative childhood trauma was associated with larger left dorsal striatum (pFWE = 0.002, Z = 3.65), right prefrontal cortex (pFWE < 0.001, Z = 4.63) and smaller left insula volume in all participants (pFWE = 0.03, Z = 3.60), and there was no interaction with PEs group. In summary, pre/peri-natal risk factors and childhood psychological trauma impact similar brain pathways, namely smaller insula and larger striatum volumes. The effect of pre/perinatal risk was greatest in those with more severe PEs, whereas effects of trauma were seen in all participants. In conclusion, environmental risk factors affect brain networks implicated in schizophrenia, which may increase an individual's propensity to develop later psychotic disorders.


Asunto(s)
Experiencias Adversas de la Infancia , Trastornos Psicóticos , Esquizofrenia , Niño , Humanos , Adolescente , Estudios Longitudinales , Imagen por Resonancia Magnética , Encéfalo
19.
Alzheimers Dement (Amst) ; 15(3): e12459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675435

RESUMEN

Introduction: There is an urgent need for biomarkers identifying individuals at risk of early-stage cognitive impairment. Using cross-sectional data from The Maastricht Study, this study included 197 individuals with mild cognitive impairment (MCI) and 200 cognitively unimpaired individuals aged 40 to 75, matched by age, sex, and educational level. Methods: We assessed the association of plasma sphingolipid and ceramide transfer protein (CERT) levels with MCI and adjusted for potentially confounding risk factors. Furthermore, the relationship of plasma sphingolipids and CERTs with magnetic resonance imaging brain volumes was assessed and age- and sex-stratified analyses were performed. Results: Associations of plasma ceramide species C18:0 and C24:1 and combined plasma ceramide chain lengths (ceramide risk score) with MCI were moderated by sex, but not by age, and higher levels were associated with MCI in men. No associations were found among women. In addition, higher levels of ceramide C20:0, C22:0, and C24:1, but not the ceramide risk score, were associated with larger volume of the hippocampus after controlling for covariates, independent of MCI. Although higher plasma ceramide C18:0 was related to higher plasma CERT levels, no association of CERT levels was found with MCI or brain volumes. Discussion: Our results warrant further analysis of plasma ceramides as potential markers for MCI in middle-aged men. In contrast to previous studies, no associations of plasma sphingolipids with MCI or brain volumes were found in women, independent of age. These results highlight the importance of accounting for sex- and age-related factors when examining sphingolipid and CERT metabolism related to cognitive function.

20.
Hum Brain Mapp ; 44(17): 5624-5640, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668332

RESUMEN

Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases.


Asunto(s)
Encefalopatías , Encéfalo , Humanos , Encéfalo/fisiología , Magnetoencefalografía/métodos , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA