Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598339

RESUMEN

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo
2.
Glob Chang Biol ; 30(4): e17281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619550

RESUMEN

The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.


Asunto(s)
Ecosistema , Suelo , Humanos , Disponibilidad Biológica , Cambio Climático , Fósforo
3.
Elife ; 122024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647539

RESUMEN

Warming and precipitation anomalies affect terrestrial carbon balance partly through altering microbial eco-physiological processes (e.g., growth and death) in soil. However, little is known about how such processes responds to simultaneous regime shifts in temperature and precipitation. We used the 18O-water quantitative stable isotope probing approach to estimate bacterial growth in alpine meadow soils of the Tibetan Plateau after a decade of warming and altered precipitation manipulation. Our results showed that the growth of major taxa was suppressed by the single and combined effects of temperature and precipitation, eliciting 40-90% of growth reduction of whole community. The antagonistic interactions of warming and altered precipitation on population growth were common (~70% taxa), represented by the weak antagonistic interactions of warming and drought, and the neutralizing effects of warming and wet. The members in Solirubrobacter and Pseudonocardia genera had high growth rates under changed climate regimes. These results are important to understand and predict the soil microbial dynamics in alpine meadow ecosystems suffering from multiple climate change factors.


Asunto(s)
Microbiología del Suelo , Tibet , Lluvia , Cambio Climático , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Suelo/química , Temperatura , Pradera , Sequías
4.
mBio ; 15(4): e0306823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38440978

RESUMEN

The chronic carrier state of the hepatitis B virus (HBV) often leads to the development of liver inflammation as carriers age. However, the exact mechanisms that trigger this hepatic inflammation remain poorly defined. We analyzed the sequential processes during the onset of liver inflammation based on time-course transcriptome and transcriptional regulatory networks in an HBV transgenic (HBV-Tg) mice model and chronic HBV-infected (CHB) patients (data from GSE83148). The key transcriptional factor (TF) responsible for hepatic inflammation occurrence was identified and then validated both in HBV-Tg mice and liver specimens from young CHB patients. By time-course analysis, an early stage of hepatic inflammation was demonstrated in 3-month-old HBV-Tg mice: a marked upregulation of genes related to inflammation (Saa1/2, S100a8/9/11, or Il1ß), innate immunity (Tlr2, Tlr7, or Tlr8), and cells chemotaxis (Ccr2, Cxcl1, Cxcl13, or Cxcl14). Within CHB samples, a unique early stage of inflammation activation was discriminated from immune tolerance and immune activation groups based on distinct gene expression patterns. Enhanced activation of TF Stat3 was strongly associated with increased inflammatory gene expression in this early stage of inflammation. Expression of phosphorylated Stat3 was higher in liver specimens from young CHB patients with relatively higher alanine aminotransferase levels. Specific inhibition of Stat3 activation significantly attenuated the degree of liver inflammation, the expression of inflammation-related genes, and the inflammatory monocytes and macrophages in 3-month-old HBV-Tg mice. Stat3 activation is essential for hepatic inflammation occurrence and is a novel indicator of early-stage immune activation in chronic HBV carriers. IMPORTANCE: Until now, it remains a mystery that chronic hepatitis B virus (HBV)-infected patients in the "immune tolerance phase" will transition to the "immune activation phase" as they age. In this study, we reveal that Stat3 activation-triggered hepatic transcriptional alterations are distinctive characteristics of the early stage of immune/inflammation activation in chronic HBV infection. For the first time, we discover a mechanism that might trigger the transition from immune tolerance to immune activation in chronic HBV carriers.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Animales , Humanos , Ratones , Redes Reguladoras de Genes , Virus de la Hepatitis B/genética , Inflamación
5.
Appl Environ Microbiol ; 90(3): e0007024, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38385702

RESUMEN

Nitrogen availability limits the net primary productivity in alpine meadows on the Qinghai-Tibetan Plateau, which is regulated by ammonia-oxidizing microorganisms. However, little is known about the elevational patterns of soil ammonia oxidizers in alpine meadows. Here, we investigated the potential nitrification rate (PNR), abundance, and community diversity of soil ammonia-oxidizing microorganisms along the altitudinal gradient between 3,200 and 4,200 m in Qinghai-Tibetan alpine meadows. We found that both PNR and amoA gene abundance declined from 3,400 to 4,200 m but lowered at 3,200 m, possibly due to intense substrate competition and biological nitrification inhibition from grasses. The primary contributors to soil nitrification were ammonia-oxidizing archaea (AOA), and their proportionate share of soil nitrification increased with altitude in comparison to ammonia-oxidizing bacteria (AOB). The alpha diversity of AOA increased by higher temperature and plant richness at low elevations, while decreased by higher moisture and low legume biomass at middle elevations. In contrast, the alpha diversity of AOB increased along elevation. The elevational patterns of AOA and AOB communities were primarily driven by temperature, soil moisture, and vegetation. These findings suggest that elevation-induced climate changes, such as shifts in temperature and water conditions, could potentially alter the soil nitrification process in alpine meadows through changes in vegetation and soil properties, which provide new insights into how soil ammonia oxidizers respond to climate change in alpine meadows.IMPORTANCEThe importance of this study is revealing that elevational patterns and nitrification contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were primarily driven by temperature, soil moisture, and vegetation. Compared to AOB, the relative contribution of AOA to soil nitrification increased at higher elevations. The research highlights the potential impact of elevation-induced climate change on nitrification processes in alpine meadows, mediated by alterations in vegetation and soil properties. By providing new insights into how ammonia oxidizers respond to climate change, this study contributes valuable knowledge to the field of microbial ecology and helps predict ecological responses to environmental changes in alpine meadows.


Asunto(s)
Bacterias , Suelo , Bacterias/genética , Suelo/química , Amoníaco , Nitrificación , Oxidación-Reducción , Microbiología del Suelo , Archaea/genética , Filogenia
6.
Nat Commun ; 15(1): 1218, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336956

RESUMEN

Renewable electricity powered electrochemical CO2 reduction (CO2R) offers a valuable method to close the carbon cycle and reduce our overreliance on fossil fuels. However, high purity CO2 is usually required as feedstock, which potentially decreases the feasibility and economic viability of the process. Direct conversion of flue gas is an attractive option but is challenging due to the low CO2 concentration and the presence of O2 impurities. As a result, up to 99% of the applied current can be lost towards the undesired oxygen reduction reaction (ORR). Here, we show that acidic electrolyte can significantly suppress ORR on Cu, enabling generation of multicarbon products from simulated flue gas. Using a composite Cu and carbon supported single-atom Ni tandem electrocatalyst, we achieved a multicarbon Faradaic efficiency of 46.5% at 200 mA cm-2, which is ~20 times higher than bare Cu under alkaline conditions. We also demonstrate stable performance for 24 h with a multicarbon product full-cell energy efficiency of 14.6%. Strikingly, this result is comparable to previously reported acidic CO2R systems using pure CO2. Our findings demonstrate a potential pathway towards designing efficient electrolyzers for direct conversion of flue gas to value-added chemicals and fuels.

7.
mBio ; 15(3): e0017724, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38376207

RESUMEN

Microbial carbon use efficiency (CUE) is a critical parameter that controls carbon storage in soil, but many uncertainties remain concerning adaptations of microbial communities to long-term fertilization that impact CUE. Based on H218O quantitative stable isotope probing coupled with metagenomic sequencing, we disentangled the roles of active microbial population dynamics and life strategies for CUE in soils after a long-term (35 years) mineral or organic fertilization. We found that the soils rich in organic matter supported high microbial CUE, indicating a more efficient microbial biomass formation and a greater carbon sequestration potential. Organic fertilizers supported active microbial communities characterized by high diversity and a relative increase in net growth rate, as well as an anabolic-biased carbon cycling, which likely explains the observed enhanced CUE. Overall, these results highlight the role of population dynamics and life strategies in understanding and predicting microbial CUE and sequestration in soil.IMPORTANCEMicrobial CUE is a major determinant of global soil organic carbon storage. Understanding the microbial processes underlying CUE can help to maintain soil sustainable productivity and mitigate climate change. Our findings indicated that active microbial communities, adapted to long-term organic fertilization, exhibited a relative increase in net growth rate and a preference for anabolic carbon cycling when compared to those subjected to chemical fertilization. These shifts in population dynamics and life strategies led the active microbes to allocate more carbon to biomass production rather than cellular respiration. Consequently, the more fertile soils may harbor a greater microbially mediated carbon sequestration potential. This finding is of great importance for manipulating microorganisms to increase soil C sequestration.


Asunto(s)
Carbono , Microbiota , Carbono/química , Suelo/química , Microbiología del Suelo , Cambio Climático
8.
Nat Commun ; 15(1): 1719, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409205

RESUMEN

Tuning interfacial electric fields provides a powerful means to control electrocatalyst activity. Importantly, electric fields can modify adsorbate binding energies based on their polarizability and dipole moment, and hence operate independently of scaling relations that fundamentally limit performance. However, implementation of such a strategy remains challenging because typical methods modify the electric field non-uniformly and affects only a minority of active sites. Here we discover that uniformly tunable electric field modulation can be achieved using a model system of single-atom catalysts (SACs). These consist of M-N4 active sites hosted on a series of spherical carbon supports with varying degrees of nanocurvature. Using in-situ Raman spectroscopy with a Stark shift reporter, we demonstrate that a larger nanocurvature induces a stronger electric field. We show that this strategy is effective over a broad range of SAC systems and electrocatalytic reactions. For instance, Ni SACs with optimized nanocurvature achieved a high CO partial current density of ~400 mA cm-2 at >99% Faradaic efficiency for CO2 reduction in acidic media.

9.
J Clin Transl Hepatol ; 12(2): 162-171, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38343613

RESUMEN

Background and Aims: SARS-CoV-2 vaccines-associated autoimmune liver diseases have been reported in several case reports. However, the safety and immunogenicity after primary and booster inactivated SARS-CoV-2 vaccination in patients with autoimmune liver diseases (AILD) is still unknown. Methods: Eighty-four patients with AILD were prospectively followed up after the second dose (primary) of inactivated SARS-CoV-2 vaccine. Some of them received the third dose (booster) of inactivated vaccine. Adverse events (AEs), autoimmune activation, and liver inflammation exacerbation after primary and booster vaccination were recorded. Meanwhile, dynamics of antireceptor-binding-domain IgG (anti-RBD-IgG), neutralizing antibodies (NAbs) and RBD-specific B cells responses were evaluated. Results: The overall AEs in AILD patients after primary and booster vaccination were 26.2% and 13.3%, respectively. The decrease of C3 level and increase of immunoglobulin light chain κ and λ levels were observed in AILD patients after primary vaccination, however, liver inflammation was not exacerbated, even after booster vaccination. Both the seroprevalence and titers of anti-RBD-IgG and NAbs were decreased over time in AILD patients after primary vaccination. Notably, the antibody titers were significantly elevated after booster vaccination (10-fold in anti-RBD-IgG and 7.4-fold in NAbs, respectively), which was as high as in healthy controls. Unfortunately, the inferior antibody response was not enhanced after booster vaccination in patients with immunosuppressants. Changes of atypical memory B cells were inversely related to antibody levels, which indicate that the impaired immune memory was partially restored partly by the booster vaccination. Conclusions: The well tolerability and enhanced humoral immune response of inactivated vaccine supports an additional booster vaccination in AILD patients without immunosuppressants.

10.
mBio ; 15(3): e0273323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319112

RESUMEN

The soil-root interface harbors complex fungal communities that play vital roles in the fitness of host plants. However, little is known about the assembly rules and potential functions of rhizospheric and endospheric mycobiota. A greenhouse experiment was conducted to explore the fungal communities inhabiting the rhizosphere and roots of 87 rice cultivars at the tillering stage via amplicon sequencing of the fungal internal transcribed spacer 1 region. The potential relationships between these communities and host plant functional traits were also investigated using Procrustes analysis, generalized additive model fitting, and correlation analysis. The fungal microbiota exhibited greater richness, higher diversity, and lower structural variability in the rhizosphere than in the root endosphere. Compared with the root endosphere, the rhizosphere supported a larger coabundance network, with greater connectivity and stronger cohesion. Null model-based analyses revealed that dispersal limitation was primarily responsible for rhizosphere fungal community assembly, while ecological drift was the dominant process in the root endosphere. The community composition of fungi in the rhizosphere was shown to be more related to plant functional traits, such as the root/whole plant biomass, root:shoot biomass ratio, root/shoot nitrogen (N) content, and root/shoot/whole plant N accumulation, than to that in the root endosphere. Overall, at the early stage of rice growth, diverse and complex rhizospheric fungal communities are shaped by stochastic-based processes and exhibit stronger associations with plant functional traits. IMPORTANCE: The assembly processes and functions of root-associated mycobiota are among the most fascinating yet elusive topics in microbial ecology. Our results revealed that stochastic forces (dispersal limitation or ecological drift) act on fungal community assembly in both the rice rhizosphere and root endosphere at the early stage of plant growth. In addition, high covariations between the rhizosphere fungal community compositions and plant functional trait profiles were clearly demonstrated in the present study. This work provides empirical evidence of the root-associated fungal assembly principles and ecological relationships of plant functional traits with rhizospheric and root endospheric mycobiota, thereby potentially providing novel perspectives for enhancing plant performance.


Asunto(s)
Microbiota , Oryza , Bacterias , Hongos , Raíces de Plantas/microbiología , Microbiología del Suelo , Rizosfera , Suelo/química
11.
J Agric Food Chem ; 72(4): 2397-2409, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230662

RESUMEN

Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.


Asunto(s)
Ascomicetos , Oxytropis , Swainsonina/metabolismo , Oxytropis/metabolismo , Oxytropis/microbiología , Apigenina/metabolismo , Multiómica , Alternaria/metabolismo , Hongos/metabolismo , Ascomicetos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Glucósidos/metabolismo
12.
Appl Environ Microbiol ; 90(1): e0156623, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38126758

RESUMEN

Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.


Asunto(s)
Bacterias , Microbiota , Interacciones Microbianas , Carbono
13.
Int J Med Sci ; 20(13): 1698-1704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928876

RESUMEN

Background: Conventional methods are low in positive rates and time-consuming for ascites pathogen detection in patients with end-stage liver disease (ESLD). With many advantages, metagenomic next-generation sequencing (mNGS) may be a good alternative method. However, the related studies are still lacking. Methods: Ascites from 50 ESLD patients were sampled for pathogen detection using mNGS and conventional methods (culture and polymorphonuclear neutrophils detection) in this prospective observational study. Results: Forty-two samples were detected positive using mNGS. 29 strains of bacteria, 11 strains of fungi, and 9 strains of viruses were detected. 46% of patients were detected to be co-infected with 2 or more pathogens by mNGS. Moreover, mNGS showed similar and high positive rates in ESLD patients with different clinical characteristics. Compared to conventional methods, mNGS had higher positivity rates (84% vs. 20%, P<0.001), sensitivity (45.2% vs. 23.8%, P=0.039), broader pathogen spectrum, shorter detection time (24 hours vs. 3-7 days), but lower specificity (25% vs 100%, P = 0.010). Furthermore, compared to conventional methods, mNGS showed similar consistence with final diagnosis (42% vs. 36%, P=0.539). Conclusions: mNGS may be a good supplement for conventional methods and helpful to early etiological diagnosis of peritonitis, and thus improve ESLD patients' survival.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Peritonitis , Humanos , Ascitis , Secuenciación de Nucleótidos de Alto Rendimiento , Peritonitis/diagnóstico , Peritonitis/etiología , Suplementos Dietéticos , Sensibilidad y Especificidad
14.
Front Microbiol ; 14: 1280011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808282

RESUMEN

The alpine grassland ecosystem is a biodiversity hotspot of plants on the Qinghai-Tibetan Plateau, where rapid climate change is altering the patterns of plant biodiversity along elevational and seasonal gradients of environments. However, how belowground microbial biodiversity changes along elevational gradient during the growing season is not well understood yet. Here, we investigated the elevational distribution of soil prokaryotic communities by using 16S rRNA amplicon sequencing along an elevational gradient between 3,200 and 4,200 m, and a seasonal gradient between June and September in the Qinghai-Tibetan alpine grasslands. First, we found soil prokaryotic diversity and community composition significantly shifted along the elevational gradient, mainly driven by soil temperature and moisture. Species richness did not show consistent elevational trends, while those of evenness declined with elevation. Copiotrophs and symbiotic diazotrophs declined with elevation, while oligotrophs and AOB increased, affected by temperature. Anaerobic or facultatively anaerobic bacteria and AOA were hump-shaped, mainly influenced by moisture. Second, seasonal patterns of community composition were mainly driven by aboveground biomass, precipitation, and soil temperature. The seasonal dynamics of community composition indicated that soil prokaryotic community, particularly Actinobacteria, was sensitive to short-term climate change, such as the monthly precipitation variation. At last, dispersal limitation consistently dominated the assembly process of soil prokaryotic communities along both elevational and seasonal gradients, especially for those of rare species, while the deterministic process of abundant species was relatively higher at drier sites and in drier July. The balance between deterministic and stochastic processes in abundant subcommunities might be strongly influenced by water conditions (precipitation/moisture). Our findings suggest that both elevation and season can alter the patterns of soil prokaryotic biodiversity in alpine grassland ecosystem of Qinghai-Tibetan Plateau, which is a biodiversity hotspot and is experiencing rapid climate change. This work provides new insights into the response of soil prokaryotic communities to changes in elevation and season, and helps us understand the temporal and spatial variations in such climate change-sensitive regions.

15.
Gels ; 9(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37623090

RESUMEN

We have previously demonstrated the potential of gelatin films as a memory device, offering a novel approach for writing, reading, and erasing through the manipulation of gelatin structure and bound water content. Here, we discovered that incorporating a bacteriorhodopsin (BR)-lipid membrane into the gelatin devices can further increase the electron conductivity of the polypeptide-bound water network and the ON/OFF ratio of the device by two folds. Our photocurrent measurements show that the BR incorporated in the membrane sandwiched in a gelatin device can generate a net proton flow from the counter side to the deposited side of the membrane. This leads to the establishment of non-electroneutrality on the gelatin films adjacent to the BR-incorporated membrane. Our Raman spectroscopy results show that BR proton pumping in the ON state gelatin device increases the bound water presence and promotes polypeptide unwinding compared to devices without BR. These findings suggest that the non-electroneutrality induced by BR proton pumping can increase the extent of polypeptide unwinding within the gelatin matrix, consequently trapping more bound water within the gelatin-bound water network. The resulting rise in hydrogen bonds could expand electron transfer routes, thereby enhancing the electron conductivity of the memory device in the ON state.

16.
Angew Chem Int Ed Engl ; 62(36): e202308782, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37522609

RESUMEN

Electrochemical CO2 reduction (CO2 R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13 CO2 /12 CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3 O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2 R in acidic media.

17.
Glob Chang Biol ; 29(17): 4758-4774, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431700

RESUMEN

Soil microbial carbon use efficiency (CUE) is a crucial parameter that can be used to evaluate the partitioning of soil carbon (C) between microbial growth and respiration. However, general patterns of microbial CUE among terrestrial ecosystems (e.g., farmland, grassland, and forest) remain controversial. To address this knowledge gap, data from 41 study sites (n = 197 soil samples) including 58 farmlands, 95 forests, and 44 grasslands were collected and analyzed to estimate microbial CUEs using a biogeochemical equilibrium model. We also evaluated the metabolic limitations of microbial growth using an enzyme vector model and the drivers of CUE across different ecosystems. The CUEs obtained from soils of farmland, forest, and grassland ecosystems were significantly different with means of 0.39, 0.33, and 0.42, respectively, illustrating that grassland soils exhibited higher microbial C sequestration potentials (p < .05). Microbial metabolic limitations were also distinct in these ecosystems, and carbon limitation was dominant exhibiting strong negative effects on CUE. Exoenzyme stoichiometry played a greater role in impacting CUE values than soil elemental stoichiometry within each ecosystem. Specifically, soil exoenzymatic ratios of C:phosphorus (P) acquisition activities (EEAC:P ) and the exoenzymatic ratio of C:nitrogen (N) acquisition activities (EEAC:N ) imparted strong negative effects on soil microbial CUE in grassland and forest ecosystems, respectively. But in farmland soils, EEAC:P exhibited greater positive effects, showing that resource constraints could regulate microbial resource allocation with discriminating patterns across terrestrial ecosystems. Furthermore, mean annual temperature (MAT) rather than mean annual precipitation (MAP) was a critical climate factor affecting CUE, and soil pH as a major factor remained positive to drive the changes in microbial CUE within ecosystems. This research illustrates a conceptual framework of microbial CUEs in terrestrial ecosystems and provides the theoretical evidence to improve soil microbial C sequestration capacity in response to global change.


Asunto(s)
Carbono , Ecosistema , Carbono/análisis , Microbiología del Suelo , Bosques , Suelo , Nitrógeno/análisis , China
18.
Glob Chang Biol ; 29(18): 5367-5378, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431724

RESUMEN

Improving rice nitrogen utilization efficiency (NUtE) is imperative to maximizing future food productivity while minimizing environmental threats, yet knowledge of its variation and the underlying regulatory factors is still lacking. Here, we integrated a dataset with 21,571 data compiled by available data from peer-reviewed literature and a large-scale field survey to address this knowledge gap. The overall results revealed great variations in rice NUtE, which were mainly associated with human activities, climate conditions, and rice variety. Specifically, N supply rate, temperature, and precipitation were the foremost determinants of rice NUtE, and NUtE responses to climatic change differed among rice varieties. Further prediction highlighted the improved rice NUtE with the increasing latitude or longitude. The indica and hybrid rice exhibited higher NUtE in low latitude regions compared to japonica and inbred rice, respectively. Collectively, our results evaluated the primary drivers of rice NUtE variations and predicted the geographic responses of NUtE in different varieties. Linking the global variations in rice NUtE with environmental factors and geographic adaptability provides valuable agronomic and ecological insights into the regulation of rice NUtE.


Asunto(s)
Oryza , Humanos , Oryza/genética , Asia , Agricultura , Clima , Nitrógeno
19.
Nat Commun ; 14(1): 4093, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433804

RESUMEN

Bacteria possess elaborate systems to manage reactive oxygen and nitrogen species (ROS) arising from exposure to the mammalian immune system and environmental stresses. Here we report the discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of stress-response proteins in the gut commensal and opportunistic pathogen Enterococcus faecalis. We analyze the tRNA epitranscriptome of E. faecalis in response to reactive oxygen species (ROS) or sublethal doses of ROS-inducing antibiotics and identify large decreases in N2-methyladenosine (m2A) in both 23 S ribosomal RNA and transfer RNA. This we determine to be due to ROS-mediated inactivation of the Fe-S cluster-containing methyltransferase, RlmN. Genetic knockout of RlmN gives rise to a proteome that mimics the oxidative stress response, with an increase in levels of superoxide dismutase and decrease in virulence proteins. While tRNA modifications were established to be dynamic for fine-tuning translation, here we report the discovery of a dynamically regulated, environmentally responsive rRNA modification. These studies lead to a model in which RlmN serves as a redox-sensitive molecular switch, directly relaying oxidative stress to modulating translation through the rRNA and the tRNA epitranscriptome, adding a different paradigm in which RNA modifications can directly regulate the proteome.


Asunto(s)
Enterococcus faecalis , Proteoma , Animales , Especies Reactivas de Oxígeno , Enterococcus faecalis/genética , Proteoma/genética , Estrés Oxidativo/genética , Procesamiento Postranscripcional del ARN , Adenosina , Proteínas de Choque Térmico , Mamíferos
20.
Infect Immun ; 91(4): e0049622, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36912636

RESUMEN

Among the unfavorable conditions bacteria encounter within the host is restricted access to essential trace metals such as iron. To overcome iron deficiency, bacteria deploy multiple strategies to scavenge iron from host tissues, with abundant examples of iron acquisition systems being implicated in bacterial pathogenesis. Yet the mechanisms utilized by the major nosocomial pathogen Enterococcus faecalis to maintain intracellular iron balance are poorly understood. In this study, we conducted a systematic investigation to identify and characterize the iron acquisition mechanisms of E. faecalis and to determine their contribution to virulence. Bioinformatic analysis and literature surveys revealed that E. faecalis possesses three conserved iron uptake systems. Through transcriptomics, we discovered two novel ABC-type transporters that mediate iron uptake. While inactivation of a single transporter had minimal impact on the ability of E. faecalis to maintain iron homeostasis, inactivation of all five systems (Δ5Fe strain) disrupted intracellular iron homeostasis and considerably impaired cell growth under iron deficiency. Virulence of the Δ5Fe strain was generally impaired in different animal models but showed niche-specific variations in mouse models, leading us to suspect that heme can serve as an iron source to E. faecalis during mammalian infections. Indeed, heme supplementation restored growth of Δ5Fe under iron depletion and virulence in an invertebrate infection model. This study revealed that the collective contribution of five iron transporters promotes E. faecalis virulence and that the ability to acquire and utilize heme as an iron source is critical to the systemic dissemination of E. faecalis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Transporte Biológico , Enterococcus faecalis , Hierro , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidad , Virulencia , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Hierro/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Infecciones por Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA