Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
iScience ; 27(6): 109929, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799566

RESUMEN

Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-ßH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.

2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569500

RESUMEN

Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.

3.
Curr Res Neurobiol ; 5: 100105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576491

RESUMEN

Mutations in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathogenetic mechanisms linked to this gene are a direct consequence of an aberrant intronic expansion of a GGGGCC hexanucleotide located between the 1a and 1b non-coding exons, which can be transcribed to form cytotoxic RNA foci or even translated into aggregation-prone dipeptide repeat proteins. Importantly, the abnormal length of these repeats affects also the expression levels of C9orf72 itself, which suggests haploinsufficiency as additional pathomechanism. Thus, it appears that both toxic gain of function and loss of function are distinct but still coexistent features contributing to the insurgence of the disease in case of C9orf72 mutations. In this study, we aimed at identifying a strategy to address both aspects of the C9orf72-related pathobiochemistry and provide proof-of-principle information for a better understanding of the mechanisms leading to neuronal loss. By using primary neurons overexpressing toxic poly(GA), the most abundant protein product of the GGGGCC repeats, we found that the antiarrhythmic drug propranolol could efficiently reduce the accumulation of aberrant aggregates and increase the survival of C9orf72-related cultures. Interestingly, the improved catabolism appeared to not depend on major degradative pathways such as autophagy and the proteasome. By analyzing the proteome of poly(GA)-expressing neurons after exposure to propranolol, we found that the drug increased lysosomal degradation through a mechanism directly involving C9orf72 protein, whose levels were increased after treatment. Further confirmation of the beneficial effect of the beta blocker on aggregates' accumulation and survival of hiPSC-derived C9orf72-mutant motoneurons strengthened the finding that addressing both facets of C9orf72 pathology might represent a valid strategy for the treatment of these ALS/FTD cases.

4.
bioRxiv ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503145

RESUMEN

Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.

5.
Biomolecules ; 13(6)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37371470

RESUMEN

Insulin-degrading enzyme (IDE) is a highly conserved metalloprotease that is mainly localized in the cytosol. Although IDE can degrade insulin and some other low molecular weight substrates efficiently, its ubiquitous expression suggests additional functions supported by experimental findings, such as a role in stress responses and cellular protein homeostasis. The translation of a long full-length IDE transcript has been reported to result in targeting to mitochondria, but the role of IDE in this compartment is unknown. To obtain initial leads on the function of IDE in mitochondria, we used a proximity biotinylation approach to identify proteins interacting with wild-type and protease-dead IDE targeted to the mitochondrial matrix. We find that IDE interacts with multiple mitochondrial ribosomal proteins as well as with proteins involved in the synthesis and assembly of mitochondrial complex I and IV. The mitochondrial interactomes of wild type and mutant IDE are highly similar and do not reveal any likely proteolytic IDE substrates. We speculate that IDE could adopt similar additional non-proteolytic functions in mitochondria as in the cytosol, acting as a chaperone and contributing to protein homeostasis and stress responses.


Asunto(s)
Transporte de Electrón , Insulisina , Ribosomas Mitocondriales , Transporte de Electrón/fisiología , Insulina/metabolismo , Insulisina/metabolismo , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Humanos
6.
Proteomics ; 22(9): e2100031, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34958708

RESUMEN

Biolayer interferometry (BLI) is a technology which allows to study the affinity between two interacting macro-molecules and to visualize their kinetic of interaction in real time. In this work, we combine BLI interaction measurement with mass spectrometry in order to identify the proteins interacting with the bait. We provide for the first time the proof of concept of the feasibility of BLI-MS in complex biological mixtures.


Asunto(s)
Interferometría , Proteínas , Interferometría/métodos , Cinética , Espectrometría de Masas , Proteínas/química
7.
Pharmaceutics ; 13(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071747

RESUMEN

Follicle-stimulating hormone (FSH) is a glycohormone synthesized by adenohypophysis, and it stimulates ovulation in women and spermatogenesis in men by binding to its receptor (FSHR). FSHR is involved in several mechanisms to transduce intracellular signals in response to the FSH stimulus. Exogenous FSH is currently used in the clinic for ovarian hyperstimulation during in vitro fertilization in women, and for treatment of infertility caused by gonadotropin deficiency in men. The glycosylation of FSH strongly affects the binding affinity to its receptor, hence significantly influencing the biological activity of the hormone. Therefore, the accurate measurement and characterization of serum hFSH glycoforms will contribute to elucidating the complex mechanism of action by which different glycoforms elicit distinct biological activity. Nowadays ELISA is the official method with which to monitor serum hFSH, but the test is unable to distinguish between the different FSH glycovariants and is therefore unsuitable to study the biological activity of this hormone. This study presents a preliminary alternative strategy for identifying and quantifying serum hFSH glycoforms based on immunopurification assay and mass spectrometry (MS), and parallel reaction monitoring (PRM) analysis. In this study, we provide an MS-PRM data acquisition method for hFSH glycopeptides identification with high specificity and their quantification by extracting the chromatographic traces of selected fragments of glycopeptides. Once set up for all its features, the proposed method could be transferred to the clinic to improve fertility treatments and follow-ups in men and women.

8.
EMBO Mol Med ; 13(7): e13131, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34125498

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which is still missing effective therapeutic strategies. Although manipulation of neuronal excitability has been tested in murine and human ALS models, it is still under debate whether neuronal activity might represent a valid target for efficient therapies. In this study, we exploited a combination of transcriptomics, proteomics, optogenetics and pharmacological approaches to investigate the activity-related pathological features of iPSC-derived C9orf72-mutant motoneurons (MN). We found that human ALSC9orf72 MN are characterized by accumulation of aberrant aggresomes, reduced expression of synaptic genes, loss of synaptic contacts and a dynamic "malactivation" of the transcription factor CREB. A similar phenotype was also found in TBK1-mutant MN and upon overexpression of poly(GA) aggregates in primary neurons, indicating a strong convergence of pathological phenotypes on synaptic dysregulation. Notably, these alterations, along with neuronal survival, could be rescued by treating ALS-related neurons with the K+ channel blockers Apamin and XE991, which, respectively, target the SK and the Kv7 channels. Thus, our study shows that restoring the activity-dependent transcriptional programme and synaptic composition exerts a neuroprotective effect on ALS disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Ratones , Neuronas Motoras
9.
Front Cell Infect Microbiol ; 11: 637604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842387

RESUMEN

The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, ß-adducin, ß-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.


Asunto(s)
Malaria Falciparum , Rasgo Drepanocítico , Eritrocitos , Humanos , Plasmodium falciparum , Proteoma , Proteínas Protozoarias
11.
Cell Rep ; 33(12): 108536, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357422

RESUMEN

VAMP7 is involved in autophagy and in exocytosis-mediated neurite growth, two yet unconnected cellular pathways. Here, we find that nutrient restriction and activation of autophagy stimulate axonal growth, while autophagy inhibition leads to loss of neuronal polarity. VAMP7 knockout (KO) neuronal cells show impaired neurite growth, whereas this process is increased in autophagy-null ATG5 KO cells. We find that endoplasmic reticulum (ER)-phagy-related LC3-interacting-region-containing proteins Atlastin 3 and Reticulon 3 (RTN3) are more abundant in autophagy-related protein ATG5 KO and less abundant in VAMP7 KO secretomes. Treatment of neuronal cells with ATG5 or VAMP7 KO conditioned medium does not recapitulate the effect of these KOs on neurite growth. A nanobody directed against VAMP7 inhibits axonal overgrowth induced by nutrient restriction. Furthermore, expression of the inhibitory Longin domain of VAMP7 impairs the subcellular localization of RTN3 in neurons. We propose that VAMP7-dependent secretion of RTN3 regulates neurite growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proteínas R-SNARE/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Humanos
12.
Data Brief ; 33: 106453, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33195772

RESUMEN

Methylmalonic acidemia is a rare inborn error of metabolism with severe clinical complications and poor outcome. The present data article is related to a proteomic investigation conducted on a HEK 293 cell line which has been genetically modified using CRISPR-CAS9 system to knockout the methylmalonyl-CoA mutase enzyme (MUT-KO). Thus, the generated cell model for methylmalonic acidemia was used for a proteomic comparison with respect to HEK 293 wild type cells performing a label-free quantification (LFQ) experiment. A comparison between FASP and S-Trap digestion methods was performed on protein extracts before to proceed with the proteomic analysis of the samples. Four biological replicates were employed for LC-MS/MS analysis and each was run in technical triplicates. MaxQuant and Perseus platforms were used to perform the LFQ of the proteomes and carry out statistical analysis, respectively. Globally, 4341 proteins were identified, and 243 as differentially regulated, of which 150 down-regulated and 93 up-regulated in the MUT-KO condition. MS proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD017977. The information provided in this dataset shed new light on the cellular mechanisms altered in this rare metabolic disorder, highlighting quantitative unbalances in proteins acting in cell structure and architecture organization and response to the stress. This article can be used as a new source of protein actors to be validated and a starting point for the identification of clinically relevant therapeutic targets.

13.
J Lipid Res ; 61(11): 1512-1523, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32769147

RESUMEN

The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.


Asunto(s)
Lípidos/análisis , Proteoma/análisis , Linfocitos T/química , Animales , Células Cultivadas , Cromatografía Liquida , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Espectrometría de Masas en Tándem
14.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679819

RESUMEN

Methylmalonic acidemia (MMA) is a rare inborn error of metabolism caused by deficiency of the methylmalonyl-CoA mutase (MUT) enzyme. Downstream MUT deficiency, methylmalonic acid accumulates together with toxic metabolites from propionyl-CoA and other compounds upstream of the block in the enzyme pathway. The presentation is with life-threatening acidosis, respiratory distress, brain disturbance, hyperammonemia, and ketosis. Survivors develop poorly understood multi-organ damage, notably to the brain and kidneys. The HEK 293 cell line was engineered by CRISPR/Cas9 technology to knock out the MUT gene (MUT-KO). Shotgun label-free quantitative proteomics and bioinformatics analyses revealed potential damaging biological processes in MUT-deficient cells. MUT-KO induced alteration of cellular architecture and morphology, and ROS overproduction. We found the alteration of proteins involved in cytoskeleton and cell adhesion organization, cell trafficking, mitochondrial, and oxidative processes, as validated by the regulation of VIM, EXT2, SDC2, FN1, GLUL, and CHD1. Additionally, a cell model of MUT-rescuing was developed in order to control the specificity of MUT-KO effects. Globally, the proteomic landscape of MUT-KO suggests the cell model to have an increased susceptibility to propionate- and H2O2-induced stress through an impairment of the mitochondrial functionality and unbalances in the oxidation-reduction processes.


Asunto(s)
Metilmalonil-CoA Mutasa/metabolismo , Estrés Oxidativo , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Propionatos/metabolismo , Proteómica
15.
EMBO Rep ; 20(11): e48150, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31544310

RESUMEN

STK38 (also known as NDR1) is a Hippo pathway serine/threonine protein kinase with multifarious functions in normal and cancer cells. Using a context-dependent proximity-labeling assay, we identify more than 250 partners of STK38 and find that STK38 modulates its partnership depending on the cellular context by increasing its association with cytoplasmic proteins upon nutrient starvation-induced autophagy and with nuclear ones during ECM detachment. We show that STK38 shuttles between the nucleus and the cytoplasm and that its nuclear exit depends on both XPO1 (aka exportin-1, CRM1) and STK38 kinase activity. We further uncover that STK38 modulates XPO1 export activity by phosphorylating XPO1 on serine 1055, thus regulating its own nuclear exit. We expand our model to other cellular contexts by discovering that XPO1 phosphorylation by STK38 regulates also the nuclear exit of Beclin1 and YAP1, key regulator of autophagy and transcriptional effector, respectively. Collectively, our results reveal STK38 as an activator of XPO1, behaving as a gatekeeper of nuclear export. These observations establish a novel mechanism of XPO1-dependent cargo export regulation by phosphorylation of XPO1's C-terminal auto-inhibitory domain.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Vía de Señalización Hippo , Humanos , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Transducción de Señal , Espectrometría de Masas en Tándem , Proteína Exportina 1
16.
Elife ; 72018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30311906

RESUMEN

Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.


Asunto(s)
Cerebelo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Polisacáridos/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/deficiencia , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Orientación del Axón , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Cerebelo/embriología , Gránulos Citoplasmáticos/metabolismo , Eliminación de Gen , Glicosilación , Inmunoglobulinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Actividad Motora , Mutación/genética , Vías Nerviosas/metabolismo , Proteómica , Células de Purkinje/metabolismo , Reproducibilidad de los Resultados , Respuesta de Proteína Desplegada
17.
J Proteomics ; 185: 1-7, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30032860

RESUMEN

Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) are pulmonary genetic disorders associated with inflammation and heterogeneous progression of the lung disease. We hypothesized that respiratory exosomes, nanovesicles circulating in the respiratory tract, may be involved in the progression of inflammation-related lung damage. We compared proteomic content of respiratory exosomes isolated from bronchoalveolar lavage fluid in CF and PCD to asthma (A), a condition also associated with inflammation but with less severe lung damage. BALF were obtained from 3 CF, 3 PCD and 6 A patients. Exosomes were isolated from BALF by ultracentrifugations and characterized using immunoelectron microscopy and western-blot. Exosomal protein analysis was performed by high-resolution mass spectrometry using label-free quantification. Exosome enrichment was validated by electron microscopy and immunodetection of CD9, CD63 and ALIX. Mass spectrometry analysis allowed the quantification of 665 proteins, of which 14 were statistically differential according to the disease. PCD and CF exosomes contained higher levels of antioxidant proteins (Superoxide-dismutase, Glutathione peroxidase-3, Peroxiredoxin-5) and proteins involved in leukocyte chemotaxis. All these proteins are known activators of the NF-KappaB pathway. Our results suggest that respiratory exosomes are involved in the pro-inflammatory propagation during the extension of CF or PCD lung diseases. SIGNIFICANCE: The mechanism of local propagation of lung disease in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) is not clearly understood. Differential Proteomic profiles of exosomes isolated from BAL from CF, PCD and asthmatic patients suggest that they carry pro-inflammatory proteins that may be involved in the progression of lung damage.


Asunto(s)
Asma/metabolismo , Trastornos de la Motilidad Ciliar/metabolismo , Fibrosis Quística/metabolismo , Exosomas/metabolismo , Proteómica/métodos , Mucosa Respiratoria/metabolismo , Adolescente , Asma/patología , Líquido del Lavado Bronquioalveolar/química , Niño , Preescolar , Trastornos de la Motilidad Ciliar/patología , Fibrosis Quística/patología , Exosomas/patología , Femenino , Humanos , Lactante , Pulmón/metabolismo , Pulmón/patología , Masculino , Espectrometría de Masas , Mucosa Respiratoria/patología
18.
Front Neurosci ; 11: 211, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473748

RESUMEN

Preproghrelin is a prohormone producing several preproghrelin-derived peptides with structural and functional heterogeneity: acyl ghrelin (AG), desacyl ghrelin (DAG), and obestatin. The absence of selective and reliable assays to measure these peptides simultaneously in biological samples has been a limitation to assess their real proportions in tissues and plasma in physiological and pathological conditions. We aimed at reliably measure the ratio between the different preproghrelin-derived peptides in murine tissues using selective immunoassays combined with a highly sensitive mass spectrometry method. AG-, DAG-, and obestatin-immunopositive fractions from the gastrointestinal tract of adult wild-type and ghrelin-deficient mice were processed for analysis by mass spectrometry (MS) with a Triple Quadrupole mass spectrometer. We found that DAG was predominant in mouse plasma, however it only represented 50% of total ghrelin (AG+DAG) production in the stomach and duodenum. Obestatin plasma levels accounted for about 30% of all circulating preproghrelin-derived peptides, however, it represented <1% of total preproghrelin-derived peptides production (AG+DAG+Obestatin) in the stomach. Assays were validated in ghrelin-deficient mice since neither ghrelin nor obestatin immunoreactivities were detected in their stomach, duodenum nor plasma. MS analyses confirmed that obestatin-immunoreactivity in stomach corresponded to the C-terminal amidated form of the peptide but not to des(1-10)-obestatin, nor to obestatin-Gly. In conclusion, specificity of ghrelin and obestatin immunoreactivities in gastrointestinal tissues using selective immunoassays was validated by MS. Obestatin was less abundant than AG or DAG in these tissues. Whether this is due to inefficient processing rate of preproghrelin into mature obestatin in gastrointestinal mouse tissues remains elusive.

19.
J Biol Chem ; 292(19): 7784-7794, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28325837

RESUMEN

Old long-lived proteins contain dehydroalanine (Dha) and dehydrobutyrine (Dhb), two amino acids engendered by dehydration of serines and threonines, respectively. Although these residues have a suspected role in protein cross-linking and aggregation, their direct implication has yet to be determined. Here, we have taken advantage of the ability of the enteropathogen Shigella to convert the phosphothreonine residue of the pT-X-pY consensus sequence of ERK and p38 into Dhb and followed the impact of dehydration on the fate of the two MAPKs. To that end, we have generated the first antibodies recognizing Dhb-modified proteins and allowing tracing them as they form. We showed that Dhb modifications accumulate in a long-lasting manner in Shigella-infected cells, causing subsequent formation of covalent cross-links of MAPKs. Moreover, the Dhb signal correlates precisely with the activation of the Shigella type III secretion apparatus, thus evidencing injectisome activity. This observation is the first to document a causal link between Dhb formation and protein cross-linking in live cells. Detection of eliminylation is a new avenue to phosphoproteome regulation in eukaryotes that will be instrumental for the development of type III secretion inhibitors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas , Shigella/enzimología , Treonina/química , Alanina/análogos & derivados , Alanina/química , Aminobutiratos/química , Animales , Anticuerpos/química , Células CACO-2 , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Ratones , Unión Proteica , Proteómica , Especificidad por Sustrato , Sistemas de Secreción Tipo III , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Mol Cell Proteomics ; 16(3): 457-468, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082515

RESUMEN

Cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by intralysosomal accumulation of cystine. The causative gene for cystinosis is CTNS, which encodes the protein cystinosin, a lysosomal proton-driven cystine transporter. Over 100 mutations have been reported, leading to varying disease severity, often in correlation with residual cystinosin activity as a transporter and with maintenance of its protein-protein interactions. In this study, we focus on the ΔITILELP mutation, the only mutation reported that sometimes leads to severe forms, inconsistent with its residual transported activity. ΔITILELP is a deletion that eliminates a consensus site on N66, one of the protein's seven glycosylation sites. Our hypothesis was that the ΔITILELP mutant is less stable and undergoes faster degradation. Our dynamic stable isotope labeling by amino acids in cell culture (SILAC) study clearly showed that wild-type cystinosin is very stable, whereas ΔITILELP is degraded three times more rapidly. Additional lysosome inhibition experiments confirmed ΔITILELP instability and showed that the degradation was mainly lysosomal. We observed that in the lysosome, ΔITILELP is still capable of interacting with the V-ATPase complex and some members of the mTOR pathway, similar to the wild-type protein. Intriguingly, our interactomic and immunofluorescence studies showed that ΔITILELP is partially retained at the endoplasmic reticulum (ER). We proposed that the ΔITILELP mutation causes protein misfolding, ER retention and inability to be processed in the Golgi apparatus, and we demonstrated that ΔITILELP carries high-mannose glycans on all six of its remaining glycosylation sites. We found that the high turnover of ΔITILELP, because of its immature glycosylation state in combination with low transport activity, might be responsible for the phenotype observed in some patients.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Técnicas de Cultivo de Célula/métodos , Marcaje Isotópico/métodos , Mutación , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Glicosilación , Humanos , Lisosomas/metabolismo , Ratones , Células 3T3 NIH , Polisacáridos/metabolismo , Pliegue de Proteína , Estabilidad Proteica , Proteolisis , Serina-Treonina Quinasas TOR/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA