Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Appl Opt ; 35(19): 3426-31, 1996 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21102731

RESUMEN

Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors.

2.
Appl Opt ; 35(21): 4117-23, 1996 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21102817

RESUMEN

A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

3.
Anal Chem ; 68(5): 753-7, 1996 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21619169

RESUMEN

The influence of the microenvironment on the fluorescence behavior of indicator molecules is investigated. A model is developed to describe the fluorescence decay of indicator molecules in a nonuniform medium. Its consequences for fluorescence lifetime-based chemical sensors are discussed and verified in two examples, namely, a pH sensor using a pyrene compound in a hydrogel and a ruthenium complex for oxygen sensing embedded in a polystyrene membrane.

4.
J Fluoresc ; 5(2): 179-82, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24226661

RESUMEN

The excited state of Ru(II)[bpy]3 (2+) dissolved in hydroxylic solvents is subject to specific solvent effects, which were hitherto not understood on a quantitative basis. We determined the solvent effects of linear monovalent alcohols on the energy gap law of internal conversion with the help of lifetime and intensity measurements. An on-line method for measurement of the temperature dependence of quantum efficiencies was introduced. A modified Franck-Condon analysis of emission spectra by taking into account the shape of a Morse potential of the involved states was applied to compute excited-state energies.

5.
J Fluoresc ; 4(4): 327-30, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24233608

RESUMEN

A method developed for quantitative determination of static and dynamic contributions to luminescence quenching is applied to Ru(II) complexes in polymer matrices (silica gel and polystyrene), quenched by oxygen. This method is based on both intensity and lifetime quenching experiments. The curvature of intensity Stern-Volmer plots is related to the results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA