Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Gels ; 10(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39195052

RESUMEN

Hydrogel features can be designed and optimized using different crosslinking agents to meet specific requirements. In this regard, the present work investigates the physico-chemical features of cellulose-based hydrogels, designed by using different epoxy crosslinkers from the same glycidyl family, namely epichlorohydrin (ECH), 1,4-butanediol diglycidyl ether (BDDE), and trimethylolpropane triglycidyl ether (TMPTGE). The effect of the crosslinker's structure (from simple to branched) and functionality (mono-, bi- and tri-epoxy groups) on the hydrogels' features was studied. The performances of the hydrogels were investigated through the gel fraction, as well as by ATR-FTIR, DVS, SEM, DSC, and TG analyses. Also, the swelling and rheological behaviors of the hydrogels were examined. The advantages and limitations of each approach were discussed and a strong correlation between the crosslinker structure and the hydrogel properties was established. The formation of new ether bonds was evidenced by ATR-FTIR spectroscopy. It was emphasized that the pore size is directly influenced by the crosslinker type, namely, it decreases with the increasing number of epoxy groups from the crosslinker molecule, i.e., from 46 ± 11.1 µm (hydrogel CE, with ECH) to 12.3 ± 2.5 µm (hydrogel CB, with BDDE) and 6.7 ± 1.5 µm (hydrogel CT, with TMPTGE). The rheological behavior is consistent with the swelling data and hydrogel morphology, such as CE with the highest Qmax and the largest pore size being relatively more elastic than CB and CT. Instead, the denser matrices obtained by using crosslinkers with more complex structures have better thermal stability. The experimental results highlight the possibility of using a specific crosslinking agent, with a defined structure and functionality, in order to establish the main characteristics of hydrogels and, implicitly, to design them for a certain field of application.

2.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791175

RESUMEN

The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some new oral matrix tablet formulations, based on Kollidon®SR and chitosan, in order to optimize the low-dose oral bioavailability of chlorzoxazone, a non-steroidal anti-inflammatory drug of class II Biopharmaceutical Classification System. Nine types of chlorzoxazone matrix tablets were obtained using the direct compression method by varying the components ratio as 1:1, 1:2, and 1:3 chlorzoxazone/excipients, 20-40 w/w % Kollidon®SR, 3-7 w/w % chitosan while the auxiliary substances: Aerosil® 1 w/w %, magnesium stearate 0.5 w/w % and Avicel® up to 100 w/w % were kept in constant concentrations. Pharmaco-technical characterization of the tablets included the analysis of flowability and compressibility properties (flow time, friction coefficient, angle of repose, Hausner ratio, and Carr index), and pharmaco-chemical characteristics (such as mass and dose uniformity, thickness, diameter, mechanical strength, friability, softening degree, and in vitro release profiles). Based on the obtained results, only three matrix tablet formulations (F1b, F2b, and F3b, containing 30 w/w % KOL and 5 w/w % CHT, were selected and further tested. These formulations were studied in detail by Fourier-transform infrared spectrometry, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The results were analyzed by fitting into four representative mathematical models for the modified-release oral formulations. In vitro kinetic study revealed a complex mechanism of release occurring in two steps of drug release, the first step (0-2 h) and the second (2-36 h). Two factors were calculated to assess the release profile of chlorzoxazone: f1-the similarity factor, and f2-the factor difference. The results have shown that both Kollidon®SR and chitosan may be used as matrix-forming agents when combined with chlorzoxazone. The three formulations showed optima pharmaco-technical properties and in vitro kinetic behavior; therefore, they have tremendous potential to be used in oral pharmaceutical products for the controlled delivery of chlorzoxazone. In vitro dissolution tests revealed a faster drug release for the F2b sample.


Asunto(s)
Quitosano , Clorzoxazona , Preparaciones de Acción Retardada , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Comprimidos , Comprimidos/química , Clorzoxazona/química , Clorzoxazona/farmacocinética , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Quitosano/química , Solubilidad , Excipientes/química , Química Farmacéutica/métodos
3.
Methods Protoc ; 6(5)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37888029

RESUMEN

In various drug delivery systems, solid lipid nanoparticles are dominantly lipid-based nanocarriers. Amiodarone hydrochloride is an antiarrhythmic agent used to treat severe rhythm disturbances. It has variable and hard-to-predict absorption in the gastrointestinal tract because of its low solubility and high permeability. The aims of this study were to improve its solubility by encapsulating amiodarone into solid lipid nanoparticles using two excipients-Compritol® 888 ATO (pellets) (C888) as a lipid matrix and Transcutol® (T) as a surfactant. Six types of amiodarone-loaded solid lipid nanoparticles (AMD-SLNs) were obtained using a hot homogenization technique followed by ultrasonication with varying sonication parameters. AMD-SLNs were characterized by their size distribution, polydispersity index, zeta potential, entrapment efficiency, and drug loading. Based on the initial evaluation of the entrapment efficiency, only three solid lipid nanoparticle formulations (P1, P3, and P5) were further tested. They were evaluated through scanning electron microscopy, Fourier-transform infrared spectrometry, near-infrared spectrometry, thermogravimetry, differential scanning calorimetry, and in vitro dissolution tests. The P5 formulation showed optimum pharmaco-technical properties, and it had the greatest potential to be used in oral pharmaceutical products for the controlled delivery of amiodarone.

4.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570620

RESUMEN

The design and manufacture of innovative multifunctional materials possessing superior characteristics, quality and standards, rigorously required for future development of existing or emerging advanced technologies, is of great importance. These materials should have a very low degree of influence (or none) on the environmental and human health. Adjusting the properties of epoxy resins with organophosphorus compounds and silver-containing additives is key to the simultaneous improvement of the flame-resistant and antimicrobial properties of advanced epoxy-based materials. These environmentally friendly epoxy resin nanocomposites were manufactured using two additives, a reactive phosphorus-containing bisphenol derived from vanillin, namely, (4-(((4-hidroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)-2-methoxyphenyl) phenylphosphonate (BPH), designed as both cross-linking agent and a flame-retardant additive for epoxy resin; and additional silver-loaded zeolite L nanoparticles (Ze-Ag NPs) used as a doping additive to impart antimicrobial activity. The effect of BPH and Ze-Ag NPs content on the structural, morphological, thermal, flame resistance and antimicrobial characteristics of thermosetting epoxy nanocomposites was investigated. The structure and morphology of epoxy nanocomposites were investigated via FTIR spectroscopy and scanning electron microscopy (SEM). In general, the nanocomposites had a glassy and homogeneous morphology. The samples showed a single glass transition temperature in the range of 166-194 °C and an initiation decomposition temperature in the range of 332-399 °C. The introduction of Ze-Ag NPs in a concentration of 7-15 wt% provided antimicrobial activity to epoxy thermosets.

5.
Membranes (Basel) ; 13(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37505004

RESUMEN

Flame-resistant polymer composites were prepared based on polyvinyl alcohol (PVA) as a polymer matrix and a polyphosphonate as flame retardant. Oxalic acid was used as crosslinking agent. LiClO4, BaTiO3, and graphene oxide were also incorporated into PVA matrix to increase the ionic conductivity. The obtained film composites were investigated by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and microscale combustion tests. Incorporating fire retardant (PFRV), BaTiO3, and graphene oxide (GO) into a material results in increased resistance to fire when compared to the control sample. A thermogravimetric analysis revealed that, as a general trend, the presence of PFRV and BaTiO3 nanoparticles enhances the residue quantity at a temperature of 700 °C from 7.9 wt% to 23.6 wt%. Their dielectric properties were evaluated with Broad Band Dielectric Spectroscopy. The electrical conductivity of the samples was determined and discussed in relation to the LiClO4 content. The electrical properties, including permittivity and conductivity, are being enhanced by the use of LiClO4. Additionally, a relaxation peak has been observed in the dielectric losses at frequencies exceeding 103 Hz. The electrical properties, including permittivity and conductivity, are being enhanced by the use of LiClO4. Additionally, a relaxation peak has been observed in the dielectric losses at frequencies exceeding 103 Hz. Out of the various composites tested, the composite containing 35 wt% of LiClO4 exhibits the highest alternating current (AC) conductivity, with a measured value of 2.46 × 10-3 S/m. Taking into consideration all the aspects discussed, these improved composites are intended for utilization in the manufacturing of Li-Ion batteries.

6.
Polymers (Basel) ; 15(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37299371

RESUMEN

The sustainable development of innovative eco-friendly multifunctional nanocomposites, possessing superior characteristics, is a noteworthy topic. Novel semi-interpenetrated nanocomposite films based on poly(vinyl alcohol) covalently and thermally crosslinked with oxalic acid (OA), reinforced with a novel organophosphorus flame retardant (PFR-4) derived from co-polycondensation in solution reaction of equimolar amounts of co-monomers, namely, bis((6-oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl)-(4-hydroxyaniline)-methylene)-1,4-phenylene, bisphenol S, and phenylphosphonic dichloride, in a molar ratio of 1:1:2, and additionally doped with silver-loaded zeolite L nanoparticles (ze-Ag), have been prepared by casting from solution technique. The morphology of the as prepared PVA-oxalic acid films and their semi-interpenetrated nanocomposites with PFR-4 and ze-Ag was investigated by scanning electron microscopy (SEM), while the homogeneous distribution of the organophosphorus compound and nanoparticles within the nanocomposite films has been introspected by means of energy dispersive X-ray spectroscopy (EDX). It was established that composites with a very low phosphorus content had noticeably improved flame retardancy. The peak of the heat release rate was reduced up to 55%, depending on the content of the flame-retardant additive and the doping ze-Ag nanoparticles introduced into the PVA/OA matrix. The ultimate tensile strength and elastic modulus increased significantly in the reinforced nanocomposites. Considerably increased antimicrobial activity was revealed in the case of the samples containing silver-loaded zeolite L nanoparticles.

7.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850339

RESUMEN

The progress of digital technologies demands more speed and larger storage capacity. Optical storage systems have the advantage of being cheap, fast and capacious. This article explores the potential use of polyimide-based films as a recording medium for optical storage devices. The materials were designed through a host-guest approach that involves a cyano-containing polyimide precursor and an azochromophore combined in the following ratios: 1:0.25, 1:0.5, 1:0.75 and 1:1. After thermal treatment up to 200 °C, polyimide systems were formed with supramolecular structures constructed via hydrogen bonding as shown by molecular modeling and FTIR at around 3350 cm-1. The aspects arising from the variation of the azo-dye content in the polyimide samples and their impact on the vitrification temperature, colorimetric features, refractive index, band gap, non-linear optical susceptibility and birefringence were investigated for the first time. The thermal analysis indicated a slight decrease in the vitrification temperature from 190.84 °C for the sample without azo dye to 163.91 °C for the film containing the highest leading of azo dye. The morphology images revealed the occurrence of periodic structures in azo-derived materials exposed to a UV laser, which is accentuated by the addition of more azo dye molecules. Optical tests allowed observation of the increase in the dominant wavelength, refractivity and optical conductivity of the samples, produced by the incorporation of azochromophore and laser irradiation. The photo-generated birefringence increased from 0.014 (sample with 1:0.25) to 0.036 (sample with 1:1), which in combination with the created regular topography pattern, is essential for the use of these materials as recording media in optical storage applications.

8.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674515

RESUMEN

The progress of the automated industry has introduced many benefits in our daily life, but it also produces undesired electromagnetic interference (EMI) that distresses the end-users and functionality of electronic devices. This article develops new composites based on a polyetherimide (PEI) matrix and cobalt ferrite (CoFe2O4) nanofiller (10-50 wt%) by mixing inorganic phase in the poly(amic acid) solution, followed by film casting and controlled heating, to acquire the corresponding imide structure. The composites were designed to contain both electric and magnetic dipole sources by including highly polarizable groups (phenyls, ethers, -CN) in the PEI structure and by loading this matrix with magnetic nanoparticles, respectively. The films exhibited high thermal stability, having the temperature at which decomposition begins in the interval of 450-487 °C. Magnetic analyses indicated a saturation magnetization, coercitive force, and magnetic remanence of 27.9 emu g-1, 705 Oe, and 9.57 emu g-1, respectively, for the PEI/CoFe2O4 50 wt%. Electrical measurements evidenced an increase in the conductivity from 4.42 10-9 S/cm for the neat PEI to 1.70 10-8 S/cm for PEI/CoFe2O4 50 wt% at 1 MHz. The subglass γ- and ß-relaxations, primary relaxation, and conductivity relaxation were also examined depending on the nanofiller content. These novel composites are investigated from the point of view of their EMI shielding properties, showing that they are capable of attenuating the electric and magnetic parts of electromagnetic waves.


Asunto(s)
Anestésicos Generales , Cobalto , Conductividad Eléctrica
9.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559867

RESUMEN

The main concern of materials designed for firefighting protective clothing applications is heat protection, which can be experienced from any uncomfortably hot objects or inner spaces, as well as direct contact with flame. While textile fibers are one of the most important components of clothing, there is a constant need for the development of innovative fire-retardant textile fibers with improved thermal characteristics. Lately, inherently fire-resistant fibers have become very popular to provide better protection for firefighters. In the current study, the electrospinning technique was applied as a versatile method to produce micro-/nano-scaled non-woven fibrous membranes based on various ratios of a poly(ether-ether-ketone) (PEEK) and a phosphorus-containing polyimide. Rheological measurements have been performed on solutions of certain ratios of these components in order to optimize the electrospinning process. FTIR spectroscopy and scanning electron microscopy were used to investigate the chemical structure and morphology of electrospun nanofiber membranes, while thermogravimetric analysis, heat transfer measurements and differential scanning calorimetry were used to determine their thermal properties. The water vapor sorption behavior and mechanical properties of the optimized electrospun nanofiber membranes were also evaluated.

10.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36365708

RESUMEN

The continuous advancement of materials science has highlighted the ongoing need for additional studies on the main composite materials topics, particularly in the field of multifunctional nano-composites, towards improving their capability to meet multifaceted requirements in order to stimulate both scientific and technological development. In this study, we report the preparation and characterization of polyetherimides (PEIs) derived from 4,4'-(4,4'-isopropylidenediphenoxy) bis (phthalic anhydride) following a two-step polycondensation reaction using either 4,4'-(1,3-phenylenedioxy) dianiline, or Jeffamine ED-600 as comonomers, or a mixture of the two diamines. Based on the PEI containing flexible Jeffamine segments, polymer composite films were developed by incorporating BaTiO3 particles. The chemical structure and morphology of the composite films were investigated by FTIR spectroscopy and scanning electron microscopy. Thermal properties were determined by thermogravimetric analysis and differential scanning calorimetry. The influence of Jeffamine segments on the thermal decomposition process was investigated by TG/MS/FTIR measurements under air and nitrogen atmospheres. Based on the obtained data, the thermal decomposition mechanism was established and is discussed in accordance with the chemical structures of the polymers. The surface properties of the PEI and PEI-composite films were characterized by performing contact angle measurements. The addition of BaTiO3 increased the wettability of the surfaces. The dielectric characteristics of polymer composite films were investigated by broad band dielectric spectroscopy measurements. It was noticed that the addition of BaTiO3 nanoparticles to the copolymer matrix gradually enhanced the dielectric constant of the composites.

11.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361962

RESUMEN

Among the multitude of polymers with carbon-based macromolecular architectures that easily ignite in certain applications where short circuits may occur, polyimide has evolved as a class of polymers with high thermal stability while exhibiting intrinsic flame retardancy at elevated temperatures via a char-forming mechanism. However, high amounts of aromatic rings in the macromolecular backbone are required for these results, which may affect other properties such as film-forming capacity or mechanical properties; thus, much work has been done to structurally derivatize or make hybrid polyimide systems. In this respect, flexible polyimide films (PI(1-4)) containing bulky 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) units have been developed starting from commercial dianhydrides and an aromatic diamine containing two side chain bulky DOPO groups. The chemical structure of PI(1-4)) was characterized by 1H NMR, 13C NMR and 31P NMR spectroscopy. The optical properties, including absorption and luminescence spectra of these polymers, were analyzed. All polyimides containing DOPO derivatives emitted blue light with an emission maxima in the range of 340-445 nm, in solvents such as N,N-dimethylformamide, N-methyl-2-pyrrolidone, chloroform, and N,N-dimethylacetamide, while green light emission (λem = 487 nm for PI-4) was evidenced in a thin-film state. The thermal decomposition mechanism and flame-retardant behavior of the resulting materials were investigated by pyrolysis-gas-chromatography spectrometry (Py-GC), scanning electron microscopy (SEM), EDX maps and FTIR spectroscopy. The residues resulting from the TGA experiments were examined by SEM microscopy images and FTIR spectra to understand the pyrolysis mechanism.


Asunto(s)
Retardadores de Llama , Retardadores de Llama/análisis , Cromatografía de Gases y Espectrometría de Masas , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Resonancia Magnética
12.
Materials (Basel) ; 15(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36363420

RESUMEN

Despite a recent sustained preoccupation for developing biobased epoxies with enhanced applicability, such products have not been widely accepted for industry because of their inferior characteristics compared to classic petroleum-based epoxy thermosets. Therefore, significant effort is being made to improve the flame retardance of the most commonly used epoxies, such as diglycidyl ether-based bisphenol A (DGEBA), bisphenol F (DGEBF), novalac epoxy, and others, while continuously avoiding the use of hazardous halogen-containing flame retardants. Herein, a phosphorus-containing bisphenol, bis(4-(((4-hydroxyphenyl)amino)(6-oxido-6H-dibenzo[c,e][1,2]oxaphosphinin-6-yl)methyl)phenyl) phenylphosphonate (BPH), was synthesized by reacting bis(4-formylphenyl)phenylphosphonate with 4-hydroxybenzaldehyde followed by the addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to the resulting azomethine groups. Environmentally friendly epoxy-based polymer thermosets were prepared by using epoxy resin as polymer matrix and a mixture of BPH and 4,4'-diaminodiphenylsulfone (DDS) as hardeners. A hyperbranched phthalocyanine polymer (HPc) and BaTiO3 nanoparticles were incorporated into epoxy resin to improve the characteristics of the final products. The structure and morphology of epoxy thermosets were evaluated by infrared spectroscopy and scanning electron microscopy (SEM), while the flammability characteristics were evaluated by microscale combustion calorimetry. Thermal properties were determined by thermogravimetric analysis and differential scanning calorimetry. The surface morphology of the char residues obtained by pyrolysis was studied by SEM analysis.

13.
Polymers (Basel) ; 14(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36235953

RESUMEN

While plastics are regarded as the most resourceful materials nowadays, ranging from countless utilities including protective or decorating coatings, to adhesives, packaging materials, electronic components, paintings, furniture, insulating composites, foams, building blocks and so on, their critical limitation is their advanced flammability, which in fire incidents can result in dramatic human fatalities and irreversible environmental damage. Herein, epoxy-based composites with improved flame-resistant characteristics have been prepared by incorporating two flame retardant additives into epoxy resin, namely 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]oxaphosphinine-6-oxide (PFR) and boric acid (H3BO3). The additional reaction of 9,10-dihydro-oxa-10-phosphophenanthrene-10-oxide (DOPO) to the carbonyl group of benzaldehyde yielded PFR, which was then used to prepare epoxy composites having a phosphorus content ranging from 1.5 to 4 wt%, while the boron content was 2 wt%. The structure, morphology, thermal stability and flammability of resulted epoxy composites were investigated by FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, and microscale combustion calorimetry (MCC). Thermogravimetric analysis indicated that the simultaneous incorporation of PFR and H3BO3 improved the thermal stability of the char residue at high temperatures. The surface morphology of the char residues, studied by SEM measurements, showed improved characteristics in the case of the samples containing both phosphorus and boron atoms. The MCC tests revealed a significant reduction in flammability as well as a significant decrease in heat release capacity for samples containing both PFR and H3BO3 compared to the neat epoxy thermoset.

14.
Materials (Basel) ; 15(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295442

RESUMEN

Caffeine and theophylline are compounds with important applications in the pharmaceutical industry and other fields of the chemical industry. These purine derivatives have simple chemical structures, therefore, the evaluation of their sublimation process contributes to the development of mass transfer analysis methods that can later be applied to other compounds with more complex structures. With the help of thermogravimetric analysis in isothermal conditions, the kinetic study of the sublimation of caffeine and theophylline, along with the evaluation of kinetic parameters (activation energy and the pre-exponential factor), was carried out. Global mass transfer coefficients were determined, which vary for caffeine between 53 × 10-8 and 631 × 10-8 mol/s·m2·Pa, and for theophylline between 68 × 10-8 and 441 × 10-8 mol/s·m2·Pa. The dimensionless equations of the form: Sh=a+b·Rec·Scd have been proposed, which allow the determination of individual mass transfer coefficients at temperatures between 130 and 160 °C for caffeine and between 170 and 200 °C for theophylline.

15.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35957115

RESUMEN

The development of intelligent materials for protective equipment applications is still growing, with enormous potential to improve the safety of personnel functioning in specialized professions, such as firefighters. The design and production of such materials by the chemical modification of biodegradable semisynthetic polymers, accompanied by modern manufacturing techniques such as electrospinning, which may increase specific properties of the targeted material, continue to attract the interest of researchers. Phosphorus-modified poly(vinyl alcohol)s have been, thus, synthesized and utilized to prepare environmentally friendly electrospun mats. Poly(vinyl alcohol)s of three different molecular weights and degrees of hydrolysis were phosphorylated by polycondensation reaction in solution in the presence of phenyl dichlorophosphate in order to enhance their flame resistance and thermal stability. The thermal behavior and the flame resistance of the resulting phosphorus-modified poly(vinyl alcohol) products were investigated by thermogravimetric analysis and by cone calorimetry at a micro scale. Based on the as-synthesized phosphorus-modified poly(vinyl alcohol)s, electrospun mats were successfully fabricated by the electrospinning process. Rheology studies were performed to establish the optimal conditions of the electrospinning process, and scanning electron microscopy investigations were undertaken to observe the morphology of the phosphorus-modified poly(vinyl alcohol) electrospun mats.

16.
Materials (Basel) ; 15(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36013833

RESUMEN

Knowing the thermodynamic and transport properties of liquid systems is very important in engineering for the development of theoretical models and for the design of new technologies. Models that allow accurate predictions of thermodynamic and transport properties are needed in chemical engineering calculations involving fluid, heat, and mass transfer. In this study, the modeling of viscosity deviation for binary and ternary systems containing benzyl alcohol, n-hexanol, and water, less studied in the literature, was carried out using Redlich and Kister (R-L) models, multiple linear regression (MLR) models and artificial neural networks (ANN). The viscosity of the binary and ternary systems was experimentally determined at the following temperatures: 293.15, 303.15, 313.15, and 323.15 K. Viscosity deviation was calculated and then correlated with mole fractions, normalized temperature, and refractive index. The neural model that led to the best performance in the testing and validation stages contains 4 neurons in the input layer, 12 neurons in the hidden layer, and one neuron in the output layer. In the testing stage for this model, the standard deviation is 0.0067, and the correlation coefficient is 0.999. In the validation stage, a deviation of 0.0226 and a correlation coefficient of 0.996 were obtained. The MLR model led to worse results than those obtained with the neural model and also with the R-L models. The standard deviation for this model is 0.099, and the correlation coefficient is 0.898. Its advantage over the R-L type models is that the influence of both composition and temperature are included in a single equation.

17.
Polymers (Basel) ; 14(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35160470

RESUMEN

Hemp fibres used as a reinforcing agent and three polymeric matrices (polypropylene, bicomponent, recycled polyester) were used to obtain composite materials by needle punching and heat pressing. The influence of the hemp/matrix ratio and the nature of the matrix on the properties of the composites were analysed. The obtained composites were characterised by physical-mechanical indices, thermal analysis (thermogravimetry (TG), differential thermogravimetry (DTG) and Differential Scanning Calorimetry (DSC)), Fourier Transform Infrared Spectroscopy (FTIR-ATR) analysis, Scanning Electron Microscopy (SEM) and Chromatic measurements. The mechanical properties of composites are influenced by both the hemp/matrix ratio and the nature of the matrix. The thermal stability of composites decreased as the amount of hemp increased (for the same mass losses, the decomposition temperature decreased significantly for composites containing a quantity of hemp greater than 50%). Regarding the nature of the matrix, for the same mass loss, the highest decomposition temperature was presented by the composites containing recycled polyester as matrix, and the lowest one was presented by composites containing polypropylene fibres as matrix. The FTIR and SEM analyses highlight the changes that occurred in the structure of the composite, changes determined both by the amount of hemp in the composite and by the nature of the matrix.

18.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502972

RESUMEN

Due to the pressing problems of today's world, regarding both the finding of new, environmentally friendly materials which have the potential to replace classic ones, and the need to limit the accelerated spread of bacteria in hospitals, offices and other types of spaces, many researchers have chosen to develop their work in this field. Thus, biopolymeric materials have evolved so much that they are gradually becoming able to remove fossil-based plastics from major industries, which are harmful to the environment and implicitly to human health. The biopolymer employed in the present study, Arboblend V2 Nature with silver nanoparticle content (AgNP) meets both aspects mentioned above. The main purpose of the paper is to replace several parts and products in operation which exhibit antibacterial action, preventing the colonization and proliferation of bacteria (Streptococcus pyogenes and Staphylococcus aureus, by using the submerged cultivation method), but also the possibility of degradation in different environments. The biopolymer characterization followed the thermal behavior of the samples, their structure and morphology through specific analyses, such as TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), SEM (scanning electron microscopy) and XRD (X-ray diffraction). The obtained results offer the possibility of use of said biocomposite material in the medical field because of its antibacterial characteristics that have proved to be positive, and, therefore, suitable for such applications. The thermal degradation and the structure of the material highlighted the possibility of employing it in good conditions at temperatures up to 200 °C. Two types of samples were used for thermal analysis: first, in the form of granules coated with silver nanoparticles, and second, test specimen cut from the sample obtained by injection molding from the coated granules with silver nanoparticles.

19.
Int J Biol Macromol ; 123: 744-751, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30452987

RESUMEN

A new approach for the preparation of poly (vinyl alcohol) (PVA) - cellulose based composite hydrogels by freezing/thawing method was conceived. We synthesized firstly the tricarboxy cellulose (OxC) (bearing three carboxyl groups in one anhydroglucose unit) using a one shot oxidation procedure and subsequently, the aqueous solutions of OxC were mixed with PVA solutions in different ratios, in the absence of any supplementary cross-linking agent. The spectral methods, FTIR, 1H, 13C NMR, as well as rheology measurements were used to assess the degree of interaction between the two components. The morphology studies of the resulted hydrogels, performed by SEM shows an excellent distribution of the tricarboxy cellulose inside the PVA matrix, the addition of tricarboxy cellulose contributing to an increase of the pore size. The rheological investigation reveals the synergistic network when an optimum amount of tricarboxy cellulose was introduced. In addition, the self-healing behavior reveals by the viscoelastic behavior, strongly recommend these hydrogels as potential candidates in tissue engineering applications.


Asunto(s)
Celulosa/química , Tecnología Química Verde/métodos , Hidrogeles/síntesis química , Alcohol Polivinílico/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética con Carbono-13 , Celulosa/síntesis química , Elasticidad , Reología , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad , Agua/química , Difracción de Rayos X
20.
Carbohydr Res ; 345(9): 1149-55, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20451899

RESUMEN

The effects of the soft-rot fungus Trichoderma viride Pers., on the thermal behavior of lime wood (Tillia cordata Mill.) were investigated. The lime wood pieces were inoculated with the fungus over a 12-week period. At pre-established time intervals two samples were withdrawn from the medium and analyzed by thermogravimetry and differential calorimetry, and the results were correlated with mass loss. Fungal activity was indicated by continuous decrease of sample mass. Modification of the wood because of the presence of the fungus was evidenced by structural changes that affected its thermal properties, both in respect to the hydrophilicity of the wood (evidenced mainly in desorption process) and in its decomposition behavior. The shape of DTG curves depends on the exposure time of wood to the action of microorganisms. The peak temperature assigned to the decomposition of wood components increases, while the global kinetic parameters for the main peak decrease with increasing exposure time of the wood to the attack by microorganisms. The increased characteristic temperatures of water desorption and cellulose decomposition processes and lower thermal stability could be explained by newly formed structures, mainly the oxidized ones.


Asunto(s)
Temperatura , Tilia/metabolismo , Rastreo Diferencial de Calorimetría , Enzimas/metabolismo , Cinética , Lignina/metabolismo , Polisacáridos/metabolismo , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA