Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Commun Chem ; 7(1): 25, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316834

RESUMEN

Controlling excited-state reactivity is a long-standing challenge in photochemistry, as a desired pathway may be inaccessible or compete with other unwanted channels. An important example is internal conversion of the anionic green fluorescent protein (GFP) chromophore where non-selective progress along two competing torsional modes (P: phenolate and I: imidazolinone) impairs and enables Z-to-E photoisomerization, respectively. Developing strategies to promote photoisomerization could drive new areas of applications of GFP-like proteins. Motivated by the charge-transfer dichotomy of the torsional modes, we explore chemical substitution on the P-ring of the chromophore as a way to control excited-state pathways and improve photoisomerization. As demonstrated by methoxylation, selective P-twisting appears difficult to achieve because the electron-donating potential effects of the substituents are counteracted by inertial effects that directly retard the motion. Conversely, these effects act in concert to promote I-twisting when introducing electron-withdrawing groups. Specifically, 2,3,5-trifluorination leads to both pathway selectivity and a more direct approach to the I-twisted intersection which, in turn, doubles the photoisomerization quantum yield. Our results suggest P-ring engineering as an effective approach to boost photoisomerization of the anionic GFP chromophore.

2.
Phys Rev Lett ; 131(14): 143001, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862660

RESUMEN

Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time.

3.
J Phys Chem A ; 127(25): 5360-5373, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37331016

RESUMEN

Chemical substituents can influence photodynamics by altering the location of critical points and the topography of the potential energy surfaces (electronic effect) and by selectively modifying the inertia of specific nuclear modes (inertial effects). Using nonadiabatic dynamics simulations, we investigate the impact of methylation on S2(ππ*) internal conversion in acrolein, the simplest linear α,ß-unsaturated carbonyl. Consistent with time constants reported in a previous time-resolved photoelectron spectroscopy study, S2 → S1 deactivation occurs on an ultrafast time scale (∼50 fs). However, our simulations do not corroborate the sequential decay model used to fit the experiment. Instead, upon reaching the S1 state, the wavepacket bifurcates: a portion undergoes ballistic S1 → S0 deactivation (∼90 fs) mediated by fast bond-length alternation motion, while the remaining decays on the picosecond time scale. Our analysis reveals that methyl substitution, generally assumed to mainly exert inertial influence, is also manifested in important electronic effects due to its weak electron-donating ability. While methylation at the ß C atom gives rise to effects principally of an inertial nature, such as retarding the twisting motion of the terminal -CHCH3 group and increasing its coupling with pyramidalization, methylation at the α or carbonyl C atom modifies the potential energy surfaces in a way that also contributes to altering the late S1-decay behavior. Specifically, our results suggest that the observed slowing of the picosecond component upon α-methylation is a consequence of a tighter surface and reduced amplitude along the central pyramidalization, effectively restricting the access to the S1/S0-intersection seam. Our work offers new insight into the S2(ππ*) internal conversion mechanisms in acrolein and its methylated derivatives and highlights site-selective methylation as a tuning knob to manipulate photochemical reactions.

4.
J Am Chem Soc ; 144(28): 12732-12746, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786916

RESUMEN

Fluorescent proteins have become routine tools for biological imaging. However, their nanosecond lifetimes on the excited state present computational hurdles to a full understanding of these photoactive proteins. In this work, we simulate approximately 0.5 nanoseconds of ab initio molecular dynamics to elucidate steric and electronic features responsible for fluorescent protein behavior. Using green fluorescent protein (GFP) and Dronpa2─widely used fluorescent proteins with contrasting functionality─as case studies, we leverage previous findings in the gas phase and solution to explore the deactivation mechanisms available to these proteins. Starting with ground-state analyses, we identify steric (the distribution of empty pockets near the chromophore) and electronic (electric fields exerted on chromophore moieties) factors that offer potential avenues for rational design. Picosecond timescale simulations on the excited state reveal that the chromophore can access twisted structures in Dronpa2, while the chromophore is largely confined to planarity in GFP. We couple ab initio multiple spawning (AIMS) and enhanced sampling simulations to discover and characterize conical intersection seams that facilitate internal conversion, which is a rare event in both systems. Our AIMS simulations correctly capture the relative fluorescence profiles of GFP and Dronpa2 within the first few picoseconds, and we attribute the diminished fluorescence intensity of Dronpa2, relative to GFP, to flexible chromophore intermediates on the excited state. Furthermore, we predict that twisted chromophore intermediates produce red-shifted intensities in the Dronpa2 fluorescence spectrum. If confirmed experimentally, this spectroscopic signature would provide valuable insights when screening and developing novel fluorescent proteins.


Asunto(s)
Electrónica , Simulación de Dinámica Molecular , Proteínas Fluorescentes Verdes/química , Espectrometría de Fluorescencia
5.
Chem Sci ; 13(2): 373-385, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35126970

RESUMEN

The functional diversity of the green fluorescent protein (GFP) family is intimately connected to the interplay between competing photo-induced transformations of the chromophore motif, anionic p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI-). Its ability to undergo Z/E-isomerization is of particular importance for super-resolution microscopy and emerging opportunities in optogenetics. Yet, key dynamical features of the underlying internal conversion process in the native HBDI- chromophore remain largely elusive. We investigate the intrinsic excited-state behavior of isolated HBDI- to resolve competing decay pathways and map out the factors governing efficiency and the stereochemical outcome of photoisomerization. Based on non-adiabatic dynamics simulations, we demonstrate that non-selective progress along the two bridge-torsional (i.e., phenolate, P, or imidazolinone, I) pathways accounts for the three decay constants reported experimentally, leading to competing ultrafast relaxation primarily along the I-twisted pathway and S1 trapping along the P-torsion. The majority of the population (∼70%) is transferred to S0 in the vicinity of two approximately enantiomeric minima on the I-twisted intersection seam (MECI-Is). Despite their sloped, reactant-biased topographies (suggesting low photoproduct yields), we find that decay through these intersections leads to products with a surprisingly high quantum yield of ∼30%. This demonstrates that E-isomer generation results at least in part from direct isomerization on the excited state. A photoisomerization committor analysis reveals a difference in intrinsic photoreactivity of the two MECI-Is and that the observed photoisomerization is the combined result of two effects: early, non-statistical dynamics around the less reactive intersection followed by later, near-statistical behavior around the more reactive MECI-I. Our work offers new insight into internal conversion of HBDI- that both establishes the intrinsic properties of the chromophore and enlightens principles for the design of chromophore derivatives and protein variants with improved photoswitching properties.

6.
Chem Sci ; 12(34): 11347-11363, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667545

RESUMEN

The chromophore of the green fluorescent protein (GFP) is critical for probing environmental influences on fluorescent protein behavior. Using the aqueous system as a bridge between the unconfined vacuum system and a constricting protein scaffold, we investigate the steric and electronic effects of the environment on the photodynamical behavior of the chromophore. Specifically, we apply ab initio multiple spawning to simulate five picoseconds of nonadiabatic dynamics after photoexcitation, resolving the excited-state pathways responsible for internal conversion in the aqueous chromophore. We identify an ultrafast pathway that proceeds through a short-lived (sub-picosecond) imidazolinone-twisted (I-twisted) species and a slower (several picoseconds) channel that proceeds through a long-lived phenolate-twisted (P-twisted) intermediate. The molecule navigates the non-equilibrium energy landscape via an aborted hula-twist-like motion toward the one-bond-flip dominated conical intersection seams, as opposed to following the pure one-bond-flip paths proposed by the excited-state equilibrium picture. We interpret our simulations in the context of time-resolved fluorescence experiments, which use short- and long-time components to describe the fluorescence decay of the aqueous GFP chromophore. Our results suggest that the longer time component is caused by an energetically uphill approach to the P-twisted intersection seam rather than an excited-state barrier to reach the twisted intramolecular charge-transfer species. Irrespective of the location of the nonadiabatic population events, the twisted intersection seams are inefficient at facilitating isomerization in aqueous solution. The disordered and homogeneous nature of the aqueous solvent environment facilitates non-selective stabilization with respect to I- and P-twisted species, offering an important foundation for understanding the consequences of selective stabilization in heterogeneous and rigid protein environments.

7.
Nature ; 596(7873): 531-535, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433948

RESUMEN

Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.

8.
J Chem Phys ; 152(21): 214115, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505165

RESUMEN

The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.

9.
Chem Sci ; 11(16): 4180-4193, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34122881

RESUMEN

Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C[double bond, length as m-dash]C torsional motion as well as intersystem crossing. We perform an in silico transient X-ray absorption spectroscopy (TRXAS) experiment at the oxygen K-edge to investigate its potential to monitor the proposed ultrafast decay pathways in malonaldehyde upon photoexcitation to its bright S2(ππ*) state. We employ both restricted active space perturbation theory and algebraic-diagrammatic construction for the polarization propagator along interpolated reaction coordinates as well as representative trajectories from ab initio multiple spawning simulations to compute the TRXAS signals from the lowest valence states. Our study suggests that oxygen K-edge TRXAS can distinctly fingerprint the passage through the H-transfer intersection and the concomitant population transfer to the S1(nπ*) state. Potential intersystem crossing to T1(ππ*) is detectable from reappearance of the double pre-edge signature and reversed intensities. Moreover, the torsional deactivation pathway induces transient charge redistribution from the enol side towards the central C-atom and manifests itself as substantial shifts of the pre-edge features. Given the continuous advances in X-ray light sources, our study proposes an experimental route to disentangle ultrafast excited-state decay channels in this prototypical ESIHT system and provides a pathway-specific mapping of the TRXAS signal to facilitate the interpretation of future experiments.

10.
Phys Chem Chem Phys ; 17(29): 19306-14, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26139162

RESUMEN

We investigate the performance of CC2 and TDDFT/CAM-B3LYP for the calculation of two-photon absorption (TPA) strengths and cross sections and contrast our results to a recent coupled cluster equation-of-motion (EOM-EE-CCSD) benchmark study [K. D. Nanda and A. I. Krylov, J. Chem. Phys., 2015, 142, 064118]. In particular, we investigate whether CC2 TPA strengths are significantly overestimated compared to higher-level coupled-cluster calculations for fluorescent protein chromophores. Our conclusion is that CC2 TPA strengths are only slightly overestimated compared to the reference EOM-EE-CCSD results and that previously published overestimated cross sections are a result of inconsistencies in the conversion of the TPA strengths to macroscopic units. TDDFT/CAM-B3LYP TPA strengths, on the other hand, are found to be 1.5 to 3 times smaller than the coupled-cluster reference for the molecular systems considered. The unsatisfactory performance of TDDFT/CAM-B3LYP can be linked to an underestimation of excited-state dipole moments predicted by TDDFT/CAM-B3LYP.

11.
Biochim Biophys Acta ; 1848(10 Pt A): 2188-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25963993

RESUMEN

Cholesterol (Chol) and ergosterol (Erg) are abundant and important sterols in the plasma membrane of mammalian and yeast cells, respectively. The effects of Chol and Erg on membrane properties, as well as their intracellular transport, can be studied with use of fluorescence probes mimicking both sterols as closely as possible. In the search for new and efficient Chol and Erg probes, we use a combination of theoretical methods to explore a series of analogs. The optical properties of the analogs (i.e. excitation energies, emission energies and oscillator strengths) are examined using time-dependent density functional theory (TDDFT) and their ability to mimic the effects of Chol and Erg on membranes is investigated with molecular dynamics (MD) simulations of each analog in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. From the set of analogs we find two probes (3a and 3b) to display favorable electronic transition properties as well as strong condensing abilities. These findings can lead to the use of new efficient probes and aid in the understanding of the structural features of Chol and Erg that impart to them their unique effects on lipid membranes.


Asunto(s)
Colesterol/síntesis química , Ergosterol/síntesis química , Colorantes Fluorescentes/síntesis química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Colesterol/análogos & derivados , Diseño de Fármacos , Ergosterol/análogos & derivados , Ensayo de Materiales
12.
Phys Chem Chem Phys ; 17(18): 12090-9, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25875497

RESUMEN

A combined experimental and computational study of solvent effects on one- and two-photon absorption spectra of three chlorinated harmine derivatives is presented. The systems studied were protonated forms of 6-chloroharmine, 8-chloroharmine and 6,8-dichloroharmine in two solvents, acetonitrile and water. For the computations, polarizable embedding density functional and coupled cluster response theory methods were used. The computations were able to model the solvent-dependent experimental data well. These results demonstrate that reasonably sophisticated computational methods can be successfully applied to accurately study linear and nonlinear spectroscopic properties of comparatively large organic molecules in solution.


Asunto(s)
Alucinógenos/química , Harmina/análogos & derivados , Acetonitrilos/química , Simulación por Computador , Halogenación , Modelos Moleculares , Conformación Molecular , Fotones , Solventes/química , Espectrofotometría , Agua/química
13.
Phys Chem Chem Phys ; 16(21): 9950-9, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24452275

RESUMEN

Linear and nonlinear spectroscopic parameters of flavin mononucleotide, FMN, have been examined both experimentally and computationally under conditions in which FMN is (1) solvated in a buffered aqueous solution, and (2) encased in a protein that is likewise solvated in a buffered aqueous solution. The latter was achieved using "miniSOG" which is an FMN-containing protein engineered from Arabidopsis thaliana phototropin 2. Although it is reasonable to expect that the encasing protein could have an appreciable effect, certainly on the nonlinear two-photon absorption cross section, we find that replacing the dynamic aqueous environment with the more static protein environment does little to influence the spectroscopic properties of FMN. The experimental and computational studies are consistent in this regard, and this agreement indicates that comparatively high-level computational methods can indeed be used with success on large chromophores with a complicated local environment. The results of the present study facilitate the much-needed development of well-characterized and readily-controlled chromophores suitable for use as intracellular sensitizers and fluorophores.


Asunto(s)
Proteínas de Arabidopsis/química , Flavinas/química , Óptica y Fotónica , Fototropinas/química , Modelos Moleculares
14.
J Chem Phys ; 139(4): 044101, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23901954

RESUMEN

We present a detailed derivation of Multi-Configuration Self-Consistent Field (MCSCF) optimization and linear response equations within the polarizable embedding scheme: PE-MCSCF. The MCSCF model enables a proper description of multiconfigurational effects in reaction paths, spin systems, excited states, and other properties which cannot be described adequately with current implementations of polarizable embedding in density functional or coupled cluster theories. In the PE-MCSCF scheme the environment surrounding the central quantum mechanical system is represented by distributed multipole moments and anisotropic dipole-dipole polarizabilities. The PE-MCSCF model has been implemented in DALTON. As a preliminary application, the low lying valence states of acetone and uracil in water has been calculated using Complete Active Space Self-Consistent Field (CASSCF) wave functions. The dynamics of the water environment have been simulated using a series of snapshots generated from classical Molecular Dynamics. The calculated shifts from gas-phase to water display between good and excellent correlation with experiment and previous calculations. As an illustration of another area of potential applications we present calculations of electronic transitions in the transition metal complex, [Fe(NO)(CN)5](2-) in a micro-solvated environment. This system is highly multiconfigurational and the influence of solvation is significant.

15.
J Phys Chem Lett ; 3(23): 3513-21, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-26290981

RESUMEN

We present a detailed study of the protein environmental effects on the one- and two-photon absorption (1PA and 2PA, respectively) properties of the S0-S1 transition in the DsRed protein using the polarizable embedding density functional theory formalism. We find that steric factors and chromophore-protein interactions act in concert to enhance the 2PA activity inside the protein while adversely blue-shifting the 1PA maximum. A two-state model reveals that the 2PA intensity gain is primarily governed by the increased change in the permanent dipole moment between the ground and the excited states acquired inside the protein. Our results indicate that this mainly is attributable to counter-directional contributions stemming from Lys163 and the conserved Arg95 with the former additionally identified as a key residue in the color tuning mechanism. The results provide new insight into the tuning mechanism of DsRed and suggest a possible strategy for simultaneous improvement of its 1PA and 2PA properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA