Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
ACS Synth Biol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303290

RESUMEN

Constructing molecular classifiers that enable cells to recognize linear and nonlinear input patterns would expand the biocomputational capabilities of engineered cells, thereby unlocking their potential in diagnostics and therapeutic applications. While several biomolecular classifier schemes have been designed, the effects of biological constraints such as resource limitation and competitive binding on the function of those classifiers have been left unexplored. Here, we first demonstrate the design of a sigma factor-based perceptron as a molecular classifier working based on the principles of molecular sequestration between the sigma factor and its antisigma molecule. We then investigate how the output of the biomolecular perceptron, i.e., its response pattern or decision boundary, is affected by the competitive binding of sigma factors to a pool of shared and limited resources of core RNA polymerase. Finally, we reveal the influence of sharing limited resources on multilayer perceptron neural networks and outline design principles that enable the construction of nonlinear classifiers using sigma-based biomolecular neural networks in the presence of competitive resource-sharing effects.

2.
bioRxiv ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39314483

RESUMEN

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.

4.
Chempluschem ; : e202400138, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866722

RESUMEN

Autonomous generation of energy, specifically adenosine triphosphate (ATP), is critical for sustaining the engineered functionalities of synthetic cells constructed from the bottom-up. In this mini-review, we categorize studies on ATP-producing synthetic cells into three different approaches: photosynthetic mechanisms, mitochondrial respiration mimicry, and utilization of non-conventional approaches such as exploiting synthetic metabolic pathways. Within this framework, we evaluate the strengths and limitations of each approach and provide directions for future research endeavors. We also introduce a concept of building ATP-generating synthetic organelle that will enable us to mimic cellular respiration in a simpler way than current strategies. This review aims to highlight the importance of energy self-production in synthetic cells, providing suggestions and ideas that may help overcome some longstanding challenges in this field.

5.
Biomol Concepts ; 15(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557557

RESUMEN

Rapid advancements in technology refine our understanding of intricate biological processes, but a crucial emphasis remains on understanding the assumptions and sources of uncertainty underlying biological measurements. This is particularly critical in cell signaling research, where a quantitative understanding of the fundamental mechanisms governing these transient events is essential for drug development, given their importance in both homeostatic and pathogenic processes. Western blotting, a technique developed decades ago, remains an indispensable tool for investigating cell signaling, protein expression, and protein-protein interactions. While improvements in statistical analysis and methodology reporting have undoubtedly enhanced data quality, understanding the underlying assumptions and limitations of visual inspection in Western blotting can provide valuable additional information for evaluating experimental conclusions. Using the example of agonist-induced receptor post-translational modification, we highlight the theoretical and experimental assumptions associated with Western blotting and demonstrate how raw blot data can offer clues to experimental variability that may not be fully captured by statistical analyses and reported methodologies. This article is not intended as a comprehensive technical review of Western blotting. Instead, we leverage an illustrative example to demonstrate how assumptions about experimental design and data normalization can be revealed within raw data and subsequently influence data interpretation.


Asunto(s)
Transducción de Señal , Western Blotting
6.
Acta Biomater ; 179: 192-206, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490482

RESUMEN

While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites. STATEMENT OF SIGNIFICANCE: The mechanical properties of the tumor microenvironment significantly influence cancer cell migration within the primary tumor, yet how these properties affect intercellular interactions in heterogeneous tumors is not well understood. By utilizing calcium and calcium chelators, we dynamically alter collagen-alginate hydrogel stiffness and investigate tumor cell behavior within co-culture spheroids in response to varying degrees of matrix confinement. High confinement is found to trigger cell sorting while reducing confinement for sorted spheroids facilitates collective cell invasion. Notably, without prior sorting, spheroids do not exhibit burst-like migration, regardless of confinement levels. This work establishes that matrix confinement and intercellular adhesion regulate 3D spheroid dynamics, offering insights into cellular organization and migration within the primary tumor.


Asunto(s)
Movimiento Celular , Esferoides Celulares , Esferoides Celulares/metabolismo , Humanos , Línea Celular Tumoral , Adhesión Celular , Microambiente Tumoral , Matriz Extracelular/metabolismo , Modelos Biológicos
7.
ACS Synth Biol ; 13(4): 974-997, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38530077

RESUMEN

The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.


Asunto(s)
Biotecnología , Biología Sintética
8.
Methods Mol Biol ; 2774: 43-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38441757

RESUMEN

Intercellular membrane-membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane-membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane-membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.


Asunto(s)
Transducción de Señal , Biología Sintética , Animales , Membranas , Biofisica , Dimerización , Mamíferos
9.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464311

RESUMEN

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, 4 microfluidic chips capable of measuring single-cell mechanics of hFOBs via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. Our analysis revealed slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell behavior and signaling in space.

10.
NPJ Microgravity ; 10(1): 35, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514677

RESUMEN

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.

11.
J Vis Exp ; (205)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526087

RESUMEN

Cell-free expression (CFE) systems are powerful tools in synthetic biology that allow biomimicry of cellular functions like biosensing and energy regeneration in synthetic cells. Reconstruction of a wide range of cellular processes, however, requires successful reconstitution of membrane proteins into the membrane of synthetic cells. While the expression of soluble proteins is usually successful in common CFE systems, the reconstitution of membrane proteins in lipid bilayers of synthetic cells has proven to be challenging. Here, a method for reconstitution of a model membrane protein, bacterial glutamate receptor (GluR0), in giant unilamellar vesicles (GUVs) as model synthetic cells based on encapsulation and incubation of the CFE reaction inside synthetic cells is demonstrated. Utilizing this platform, the effect of substituting the N-terminal signal peptide of GluR0 with proteorhodopsin signal peptide on successful cotranslational translocation of GluR0 into membranes of hybrid GUVs is demonstrated. This method provides a robust procedure that will allow cell-free reconstitution of various membrane proteins in synthetic cells.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Liposomas Unilamelares/metabolismo , Membranas/metabolismo , Señales de Clasificación de Proteína
12.
Cytoskeleton (Hoboken) ; 81(8): 310-317, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38326972

RESUMEN

Although diverse actin network architectures found inside the cell have been individually reconstituted outside of the cell, how different types of actin architectures reorganize under applied forces is not entirely understood. Recently, bottom-up reconstitution has enabled studies where dynamic and phenotypic characteristics of various actin networks can be recreated in an isolated cell-like environment. Here, by creating a giant unilamellar vesicle (GUV)-based cell model encapsulating actin networks, we investigate how actin networks rearrange in response to localized stresses applied by micropipette aspiration. We reconstitute actin bundles and branched bundles in GUVs separately and mechanically perturb them. Interestingly, we find that, when aspirated, protrusive actin bundles that are otherwise randomly oriented in the GUV lumen collapse and align along the axis of the micropipette. However, when branched bundles are aspirated, the network remains intact and outside of the pipette while the GUV membrane is aspirated into the micropipette. These results reveal distinct responses in the rearrangement of actin networks in a network architecture-dependent manner when subjected to physical forces.


Asunto(s)
Actinas , Liposomas Unilamelares , Actinas/metabolismo , Liposomas Unilamelares/metabolismo , Citoesqueleto de Actina/metabolismo , Animales
13.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38260570

RESUMEN

Cell signaling through direct physical cell-cell contacts plays vital roles in biology during development, angiogenesis, and immune response. Intercellular communication mechanisms between synthetic cells constructed from the bottom up are majorly reliant on diffusible chemical signals, thus limiting the range of responses in receiver cells. Engineering contact-dependent signaling between synthetic cells promises to unlock more complicated signaling schemes with different types of responses. Here, we design and demonstrate a light-activated contact-dependent communication tool for synthetic cells. We utilize a split bioluminescent protein to limit signal generation exclusively to contact interfaces of synthetic cells, driving the recruitment of a photoswitchable protein in receiver cells, akin to juxtacrine signaling in living cells. Our modular design not only demonstrates contact-dependent communication between synthetic cells but also provides a platform for engineering orthogonal contact-dependent signaling mechanisms.

14.
bioRxiv ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-37546827

RESUMEN

While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites.

15.
SLAS Technol ; 29(2): 100095, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37385542

RESUMEN

The ability of cells to sense and respond to their physical environment plays a fundamental role in a broad spectrum of biological processes. As one of the most essential molecular force sensors and transducers found in cell membranes, mechanosensitive (MS) ion channels can convert mechanical inputs into biochemical or electrical signals to mediate a variety of sensations. The bottom-up construction of cell-sized compartments displaying cell-like organization, behaviors, and complexity, also known as synthetic cells, has gained popularity as an experimental platform to characterize biological functions in isolation. By reconstituting MS channels in the synthetic lipid bilayers, we envision using mechanosensitive synthetic cells for several medical applications. Here, we describe three different concepts for using ultrasound, shear stress, and compressive stress as mechanical stimuli to activate drug release from mechanosensitive synthetic cells for disease treatments.


Asunto(s)
Células Artificiales , Mecanotransducción Celular/fisiología , Canales Iónicos/metabolismo , Membrana Celular/metabolismo
16.
Angew Chem Int Ed Engl ; 62(41): e202308509, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37607024

RESUMEN

Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.

17.
Chem Commun (Camb) ; 59(57): 8806-8809, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37365952

RESUMEN

In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.


Asunto(s)
Células Artificiales , Fusión de Membrana , Calcio/metabolismo , Proteínas SNARE/metabolismo
18.
bioRxiv ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205334

RESUMEN

In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.

19.
Comput Struct Biotechnol J ; 21: 550-562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36659916

RESUMEN

Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.

20.
ACS Sens ; 8(1): 12-18, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36608338

RESUMEN

Plasma membrane tension functions as a global physical organizer of cellular activities. Technical limitations of current membrane tension measurement techniques have hampered in-depth investigation of cellular membrane biophysics and the role of plasma membrane tension in regulating cellular processes. Here, we develop an optical membrane tension reporter by repurposing an E. coli mechanosensitive channel via insertion of circularly permuted GFP (cpGFP), which undergoes a large conformational rearrangement associated with channel activation and thus fluorescence intensity changes under increased membrane tension.


Asunto(s)
Proteínas de Escherichia coli , Canales Iónicos , Escherichia coli/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA