Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Cell Int ; 24(1): 198, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835077

RESUMEN

Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.

2.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629424

RESUMEN

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Asunto(s)
Tumores del Estroma Gastrointestinal , Proteínas con Homeodominio LIM , Proteínas Musculares , Proteínas Proto-Oncogénicas c-kit , Transducción de Señal , Factores de Transcripción , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Tumores del Estroma Gastrointestinal/metabolismo , Animales , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Mesilato de Imatinib/farmacología , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Línea Celular Tumoral , Ubiquitinación
3.
Rep Biochem Mol Biol ; 12(1): 74-82, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37724142

RESUMEN

Background: Mutations in the receptor tyrosine kinase KIT are the major cause of gastrointestinal stromal tumors. KIT-mediated activation of the RAS/RAF/MEK/ERK and PI3 kinase/AKT pathways plays an important role in KIT mutant-mediated cell transformation. Methods: The frequently seen primary KIT mutations W557K558del and V560D, and the secondary KIT mutations V654A and N822K, in gastrointestinal stromal tumors were stably transfected into Ba/F3 cells. Cell proliferation was examined with a CCK kit, and cell survival and cell cycle were examined by flow cytometry. Cell signaling was examined by western blot. Results: We found that farnesyltransferase inhibitors tipifarnib and lonafarnib, which inhibit RAS activity, inhibited ERK activation mediated by both wild-type and KIT mutants, which often occur in gastrointestinal stromal tumors. Correspondingly, both wild-type and KIT mutant-mediated cell survival and proliferation were inhibited by both inhibitors. Imatinib is used as the first-line targeted therapy for gastrointestinal stromal tumors in the clinic. In our study, both inhibitors increased imatinib-mediated inhibition of cell survival and proliferation induced by both wild-type and KIT mutants. Similar to the primary KIT mutations, secondary mutations of KIT-induced ERK activation and cell response were inhibited by both inhibitors. Conclusions: Our results suggested the potential benefit of farnesyltransferase inhibitors either alone or combined with imatinib in the treatment of gastrointestinal stromal tumors carrying KIT mutations.

4.
Gastric Cancer ; 26(5): 677-690, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37222910

RESUMEN

BACKGROUND: KIT is frequently mutated in gastrointestinal stromal tumors (GISTs), and the treatment of GISTs largely relies on targeting KIT currently. In this study, we aimed to investigate the role of sprouty RTK signaling antagonist 4 (SPRY4) in GISTs and related mechanisms. METHODS: Ba/F3 cells and GIST-T1 cell were used as cell models, and mice carrying germline KIT/V558A mutation were used as animal model. Gene expression was examined by qRT-PCR and western blot. Protein association was examined by immunoprecipitation. RESULTS: Our study revealed that KIT increased the expression of SPRY4 in GISTs. SPRY4 was found to bind to both wild-type KIT and primary KIT mutants in GISTs, and inhibited KIT expression and activation, leading to decreased cell survival and proliferation mediated by KIT. We also observed that inhibition of SPRY4 expression in KITV558A/WT mice led to increased tumorigenesis of GISTs in vivo. Moreover, our results demonstrated that SPRY4 enhanced the inhibitory effect of imatinib on the activation of primary KIT mutants, as well as on cell proliferation and survival mediated by the primary KIT mutants. However, in contrast to this, SPRY4 did not affect the expression and activation of drug-resistant secondary KIT mutants, nor did it affect the sensitivity of secondary KIT mutants to imatinib. These findings suggested that secondary KIT mutants regulate a different downstream signaling cascade than primary KIT mutants. CONCLUSIONS: Our results suggested that SPRY4 acts as negative feedback of primary KIT mutants in GISTs by inhibiting KIT expression and activation. It can increase the sensitivity of primary KIT mutants to imatinib. In contrast, secondary KIT mutants are resistant to the inhibition of SPRY4.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Neoplasias Gástricas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzamidas/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Mutación , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(2): 138-143, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872432

RESUMEN

Objective To study the regulation of D816V mutation of III tyrosine kinase receptor KIT on RNA binding proteins HNRNPL and HNRNPK. Methods In COS-1 cells, wild-type KIT or KIT D816V mutation were expressed alone or together with HNRNPL or HNRNPK. Activation of KIT and phosphorylation of HNRNPL and HNRNPK were detected by immunoprecipitation and Western blot analysis. The localization of KIT, HNRNPL and HNRNPK in COS-1 cells were examined by confocal microscopy. Results Wild-type KIT needs to bind its ligand stem cell factor (SCF) for phosphorylation, while KIT D816V could auto-phosphorylation without SCF stimulation. In addition, KIT D816V can induce phosphorylation of HNRNPL and HNRNPK, which is not possible in wild-type KIT. HNRNPL and HNRNPK are expressed in the nucleus, and wild-type KIT is expressed in cytosol and cell membrane, while KIT D816V is mainly found in cytosol. Conclusion Wild-type KIT needs SCF binding for activation, while KIT D816V can autoactivate without SCF stimulation, and induces phosphorylation of HNRNPL and HNRNPK specifically.


Asunto(s)
Factor de Células Madre , Chlorocebus aethiops , Animales , Fosforilación , Células COS , Western Blotting , Membrana Celular , Mutación
6.
Front Cell Dev Biol ; 11: 1309719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161332

RESUMEN

Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA