Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
In Vitro Cell Dev Biol Anim ; 60(1): 89-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38253954

RESUMEN

Cardiovascular disease is the deadliest disease in the world. Previous studies have shown that Dihydrotanshinone I (DHT) can improve cardiac function after myocardial injury. This study aimed to observe the protective effect and mechanism of DHT on H9c2 cells by establishing an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model. By constructing OGD/R injury simulation of H9c2 cells in a myocardial injury model, the proliferation of H9c2 cells treated with DHT concentrations of 0.1 µmol/L were not affected at 24, 48, and 72 h. DHT can significantly reduce the apoptosis of H9c2 cells caused by OGD/R. Compared with the OGD/R group, DHT treatment significantly reduced the level of MDA and increased the level of SOD in cells. DHT treatment of cells can significantly reduce the levels of ROS and Superoxide in mitochondria in H9c2 cells caused by OGD/R and H2O2. DHT significantly reduced the phosphorylation levels of P38MAPK and ERK in H9c2 cells induced by OGD/R, and significantly increased the phosphorylation levels of AKT in H9c2 cells. DHT can significantly reduce the oxidative stress damage of H9c2 cells caused by H2O2 and OGD/R, thereby reducing the apoptosis of H9c2 cells. And this may be related to regulating the phosphorylation levels of AKT, ERK, and P38MAPK.


Asunto(s)
Furanos , Peróxido de Hidrógeno , Fenantrenos , Proteínas Proto-Oncogénicas c-akt , Quinonas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Peróxido de Hidrógeno/metabolismo , Transducción de Señal , Oxígeno/farmacología , Oxígeno/metabolismo , Apoptosis , Glucosa/metabolismo , Miocitos Cardíacos/metabolismo
3.
Mol Neurobiol ; 61(2): 935-949, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37672149

RESUMEN

Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduction in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the proliferation activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially influencing the neurite growth of neurons.


Asunto(s)
Electroacupuntura , MicroARNs , Traumatismos de los Nervios Periféricos , ARN Largo no Codificante , Neuropatía Ciática , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Neuropatía Ciática/metabolismo , Regeneración Nerviosa/fisiología , Nervio Ciático/metabolismo
4.
Redox Biol ; 54: 102384, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777198

RESUMEN

Notoginsenoside R1 (NGR1) is the main monomeric component extracted from the dried roots and rhizomes of Panax notoginseng, and exerts pharmacological action against myocardial infarction (MI). Owing to the differences in compound distribution, absorption, and metabolism in vivo, exploring a more effective drug delivery system with a high therapeutic targeting effect is crucial. In the early stages of MI, CD11b-expressing monocytes and neutrophils accumulate at infarct sites. Thus, we designed a mesoporous silica nanoparticle-conjugated CD11b antibody with loaded NGR1 (MSN-NGR1-CD11b antibody), which allowed NGR1 precise targeted delivery to the heart in a noninvasively manner. By increasing targeting to the injured myocardium, intravenous injection of MSN-NGR1-CD11b antibody nanoparticle in MI mice improved cardiac function and angiogenesis, reduced cell apoptosis, and regulate macrophage phenotype and inflammatory factors and chemokines. In order to further explore the mechanism of NGR1 protecting myocardium, cell oxidative stress model and oxygen-glucose deprivation (OGD) model were established. NGR1 protected H9C2 cells and primary cardiomyocytes against oxidative injury induced by H2O2 and OGD treatment. Further network pharmacology and molecular docking analyses suggested that the AKT, MAPK and Hippo signaling pathways were involved in the regulation of NGR1 in myocardial protection. Indeed, NGR1 could elevate the levels of p-Akt and p-ERK, and promote the nuclear translocation of YAP. Furthermore, LY294002 (AKT inhibitor), U0126 (ERK1/2 inhibitor) and Verteporfin (YAP inhibitor) administration in H9C2 cells indicated the involvement of AKT, MAPK and Hippo signaling pathways in NGR1 effects. Meanwhile, MSN-NGR1-CD11b antibody nanoparticles enhanced the activation of AKT and MAPK signaling pathways and the nuclear translocation of YAP at the infarcted site. Our research demonstrated that MSN-NGR1-CD11b antibody nanoparticle injection after MI enhanced the targeting of NGR1 to the infarcted myocardium and improved cardiac function. More importantly, our pioneering research provides a new strategy for targeting drug delivery systems to the ischemic niche.


Asunto(s)
Infarto del Miocardio , Nanopartículas , Animales , Apoptosis , Ginsenósidos , Glucosa , Peróxido de Hidrógeno , Ratones , Simulación del Acoplamiento Molecular , Infarto del Miocardio/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA