Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.252
Filtrar
1.
Opt Lett ; 49(11): 2966-2969, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824304

RESUMEN

Over the past decades, spin qubits in silicon carbide (SiC) have emerged as promising platforms for a wide range of quantum technologies. The fluorescence intensity holds significant importance in the performance of quantum photonics, quantum information process, and sensitivity of quantum sensing. In this work, a dual-layer Au/SiO2 dielectric cavity is employed to enhance the fluorescence intensity of a shallow silicon vacancy ensemble in 4H-SiC. Experimental results demonstrate an effective fourfold augmentation in fluorescence counts at saturating laser power, corroborating our theoretical predictions. Based on this, we further investigate the influence of dielectric cavities on the contrast and linewidth of optically detected magnetic resonance (ODMR). There is a 1.6-fold improvement in magnetic field sensitivity. In spin echo experiments, coherence times remain constant regardless of the thickness of dielectric cavities. These experiments pave the way for broader applications of dielectric cavities in SiC-based quantum technologies.

2.
Neurochem Res ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824460

RESUMEN

Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and ß-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.

3.
Small ; : e2402255, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837847

RESUMEN

The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.

5.
Small Methods ; : e2400359, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845084

RESUMEN

To simulate biological visual systems and surpass their functions and performance, it is essential to develop high-performance optoelectronic neuromorphic electronics with broadband response, low power consumption, and fast response speed. Among these, optoelectronic synaptic transistors have emerged as promising candidates for constructing neuromorphic visual systems. In this work, flexible printed broadband (from 275 to 1050 nm) optoelectronic carbon nanotube synaptic transistors with good stability, high response speed (3.14 ms), and low-power consumption (as low as 0.1 fJ per event with the 1050 nm pulse illumination) using PbS quantum dots (QDs) modified semiconducting single-walled carbon nanotubes (sc-SWCNTs) as active layers are developed. In response to optical pulses within the ultraviolet to near-infrared wavelength range, the optoelectronic neuromorphic devices exhibit excitatory postsynaptic current, paired-pulse facilitation, and a transition from short-term plasticity to long-term plasticity, and other optical synaptic behaviors. Furthermore, a simplified neural morphology visual array is developed to simulate integrated functions such as image perception, memory, and preprocessing. More importantly, it can also emulate other complicated bionic functions, such as the infrared perception of salmon eyes and the warning behavior of reindeer in different environments. This work holds immense significance in advancing the development of artificial neural visual systems.

6.
Phys Rev Lett ; 132(17): 173801, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728719

RESUMEN

Ultrafast imaging can capture the dynamic scenes with a nanosecond and even femtosecond temporal resolution. Complementarily, phase imaging can provide the morphology, refractive index, or thickness information that intensity imaging cannot represent. Therefore, it is important to realize the simultaneous ultrafast intensity and phase imaging for achieving as much information as possible in the detection of ultrafast dynamic scenes. Here, we report a single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging technique, shortened as CS-CMUI, which integrates coherent modulation imaging, compressive imaging, and streak imaging. We theoretically demonstrate through numerical simulations that CS-CMUI can obtain both the intensity and phase information of the dynamic scenes with ultrahigh fidelity. Furthermore, we experimentally build a CS-CMUI system and successfully measure the intensity and phase evolution of a multimode Q-switched laser pulse and the dynamical behavior of laser ablation on an indium tin oxide thin film. It is anticipated that CS-CMUI enables a profound comprehension of ultrafast phenomena and promotes the advancement of various practical applications, which will have substantial impact on fundamental and applied sciences.

7.
Small ; : e2401966, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733223

RESUMEN

While research on organic thermoelectric polymers is making significant progress in recent years, realization of a single polymer material possessing both thermoelectric properties and stretchability for the next generation of self-powered wearable electronics is a challenging task and remains an area yet to be explored. A new molecular engineering concept of "conjugated breaker" is employed to impart stretchability to a highly crystalline diketopyrrolepyrrole (DPP)-based polymer. A hexacyclic diindenothieno[2,3-b]thiophene (DITT) unit, with two 4-octyloxyphenyl groups substituted at the tetrahedral sp3-carbon bridges, is selected to function as the conjugated breaker that can sterically hinder intermolecular packing to reduce polymers' crystallinity. A series of donor-acceptor random copolymers is thus developed via polymerizing the crystalline DPP units with the DITT conjugated breakers. By controlling the monomeric DPP/DITT ratios, DITT30 reaches the optimal balance of crystalline/amorphous regions, exhibiting an exceptional power factor (PF) value up to 12.5 µW m-1 K-2 after FeCl3-doping; while, simultaneously displaying the capability to withstand strains exceeding 100%. More significantly, the doped DITT30 film possesses excellent mechanical endurance, retaining 80% of its initial PF value after 200 cycles of stretching/releasing at a strain of 50%. This research marks a pioneering achievement in creating intrinsically stretchable polymers with exceptional thermoelectric properties.

8.
J Exp Bot ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693779

RESUMEN

Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay-production of ROS. It is well known that ROS ignite redox signaling and when in excess, cause oxidative stress damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.

9.
Cancer Imaging ; 24(1): 56, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702821

RESUMEN

BACKGROUND: This study aimed to compare the diagnostic value of [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT imaging for primary lesions and metastatic lymph nodes in patients with tonsil cancer. METHOD: Twenty-one tonsil cancer patients who underwent [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT scans within two weeks in our centre were retrospectively enrolled. The maximum standardized uptake value (SUVmax) and tumor-to-background ratio (TBR) of the two tracers were compared by using the Mann‒Whitney U test. In addition, the sensitivity, specificity, and accuracy of the two methods for diagnosing metastatic lymph nodes were analysed. RESULTS: In detecting primary lesions, the efficiency was higher for [68 Ga]Ga-DOTA-FAPI-04 PET/CT (20/22) than for [18F]FDG PET/CT (9/22). Although [68 Ga]Ga-DOTA-FAPI-04 uptake (SUVmax, 5.03 ± 4.06) was lower than [18F]FDG uptake (SUVmax, 7.90 ± 4.84, P = 0.006), [68 Ga]Ga-DOTA-FAPI-04 improved the distinction between the primary tumor and contralateral normal tonsillar tissue. The TBR was significantly higher for [68 Ga]Ga-DOTA-FAPI-04 PET/CT (3.19 ± 2.06) than for [18F]FDG PET/CT (1.89 ± 1.80) (p < 0.001). In lymph node analysis, SUVmax and TBR were not significantly different between [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT (7.67 ± 5.88 vs. 8.36 ± 6.15, P = 0.498 and 5.56 ± 4.02 vs. 4.26 ± 3.16, P = 0.123, respectively). The specificity and accuracy of [68 Ga]Ga-DOTA-FAPI-04 PET/CT were higher than those of [18F]FDG PET/CT in diagnosing metastatic cervical lymph nodes (all P < 0.05). CONCLUSION: The availability of [68 Ga]Ga-DOTA-FAPI-04 complements the diagnostic results of [18F]FDG by improving the detection rate of primary lesions and the diagnostic accuracy of cervical metastatic lymph nodes in tonsil cancer compared to [18F]FDG.


Asunto(s)
Fluorodesoxiglucosa F18 , Metástasis Linfática , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Neoplasias Tonsilares , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Femenino , Estudios Retrospectivos , Metástasis Linfática/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Neoplasias Tonsilares/diagnóstico por imagen , Neoplasias Tonsilares/patología , Adulto , Radioisótopos de Galio , Compuestos Organometálicos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología
10.
Int J Gen Med ; 17: 2055-2063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751493

RESUMEN

Surveillance of drug safety is an important aspect in the routine medical care. Adverse events caused by real-world drug utilization has become one of the leading causes of death and an urgent issue in the field of toxicology. Cardiovascular disease is now the leading cause of fatal diseases in most countries, especially in the elderly population who often suffer from multiple diseases and need long-term multidrug therapy. Among which, statins have been widely used to lower bad cholesterol and regress coronary plaque mainly in patients with hyperlipidemia and atherosclerotic cardiovascular diseases (ASCVD). Although the real-world benefits of statins are significant, different degrees and types of adverse drug reactions (ADR) such as liver dysfunction and muscle injury, have a great impact on the original treatment regimens as well as the quality of life. This review describes the epidemiology, mechanisms, early identification and post-intervention of statin-associated liver dysfunction and muscle injury based on the updated clinical evidence. It provides systematic and comprehensive guidance and necessary supplement for the clinical safety of statin use in cardiovascular diseases.

11.
Front Endocrinol (Lausanne) ; 15: 1356914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752181

RESUMEN

Introduction: Nutritional deficiency occurs frequently during pregnancy and breastfeeding. Tryptophan (Trp), an essential amino acid which is critical for protein synthesis, serves as the precursor for serotonin, melatonin, and kynurenine (Kyn). The imbalance between serotonin and kynurenine pathways in Trp metabolism is closely related to inflammation and depression. This study assessed the effects of Trp deficiency on mouse early pregnancy. Methods: Embryo implantation and decidualization were analyzed after female mice had been fed diets containing 0.2% Trp (for the control group), 0.062% Trp (for the low Trp group) and 0% Trp (for the Trp-free group) for two months. The uteri of the mice were collected on days 4, 5, and 8 of pregnancy for further analysis. Results: On day 8 of pregnancy, the number of implantation sites were found to be similar between the control and the low Trp groups. However, no implantation sites were detected in the Trp-free group. On day 5 of pregnancy, plane polarity- and decidualization-related molecules showed abnormal expression pattern in the Trp-free group. On day 4 of pregnancy, there was no significant difference in uterine receptivity molecules between the low-Trp group and the control group, but uterine receptivity was abnormal in the Trp-free group. At implantation sites of the Trp-free group, IDO and AHR levels were markedly elevated. This potentially increased levels of Kyn, 2-hydroxy estradiol, and 4-hydroxy estradiol to affect decidualization. Conclusions: Trp-free diet may impair decidualization via the IDO-KYN-AHR pathway.


Asunto(s)
Decidua , Implantación del Embrión , Triptófano , Animales , Femenino , Implantación del Embrión/fisiología , Implantación del Embrión/efectos de los fármacos , Triptófano/metabolismo , Ratones , Embarazo , Decidua/metabolismo , Dieta , Quinurenina/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-38760602

RESUMEN

Based on empirical analysis of 113 climate disasters affecting 3563 listed firms across 31 provinces in China from 2010 to 2022, as documented in the Emergency Events Database (EM-DAT), this study employs event study and multiple regression to explore the impact of proactive green innovation on firm climate resilience. By categorizing proactive green innovation into process and product innovation and climate resilience into short-term and long-term resilience, a proactive green innovation-firm climate resilience 2 × 2 matrix is constructed to provide innovative insights. This study reveals that proactive green innovation enhances firm climate resilience. Specifically, proactive green process innovation both enhances short-term and long-term climate resilience, while proactive green product innovation only enhances long-term rather than short-term climate resilience. Furthermore, climate disaster has inverted U-shaped interaction effect on the relationship between proactive green innovation and short-term climate resilience and U-shaped interaction effect on the relationship between proactive green innovation and long-term climate resilience. Additionally, this study also investigates the heterogeneous mechanisms of proactive green innovation enhancing short-term and long-term climate resilience based on network embeddedness theory and legitimacy theory.

14.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723970

RESUMEN

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Asunto(s)
Arachis , Carbón Orgánico , Fijación del Nitrógeno , Raíces de Plantas , Suelo , Arachis/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo , Fertilizantes , Estiércol
15.
J Appl Toxicol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782376

RESUMEN

Legubicin is a novel conjugate of doxorubicin and a legumain-cleavable peptide linker. It has been developed to ameliorate the side effects of doxorubicin. Biodistribution in tumor-bearing mice, acute tolerance, and potential systemic toxic effects in Sprague-Dawley rats and beagle dogs of legubicin were assessed. Legubicin exists mainly as a protein complex in plasma after entering the circulation. Compared with conventional doxorubicin at an equal molar dose in mice, we found higher exposure to doxorubicin in tumor (approximately 1.7-fold increase) while lower exposure in normal tissues (an ~3.26-, 3.46-, and 1.29-fold reduction in heart, kidney, and plasma, respectively) in tumor-bearing mice after intravenous injection of legubicin. The acute maximum tolerance dose (MTD) of legubicin was >16 mg/kg doxorubicin equivalent in female rats, 11 mg/kg doxorubicin equivalent in male rats (LD50 of conventional doxorubicin is 10.51 mg/kg), and >8 mg/kg doxorubicin equivalent in dogs (MTD of conventional doxorubicin is 1.5 mg/kg). Four-week repeat-dose toxicity studies of intravenous legubicin were conducted in rats (5, 10, and 25 mg/kg/dose once weekly) and dogs (3/1.5, 10/5, and 20/10 mg/kg/dose once weekly); the dose levels were reduced from the second dose due to intolerable legubicin-associated toxicity at 20 mg/kg. Major organs of toxicity included the gastrointestinal tract, lymphoid and hematopoietic organs, kidney, skin, liver, reproductive organs, and peripheral nerves, which are all associated with doxorubicin. However, cardiotoxicity was only noted at MTD dose levels. Altogether, our results confirm an improved safety profile of legubicin over conventional doxorubicin and support its clinical benefit for treating cancer.

16.
J Pharm Biomed Anal ; 247: 116257, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38815520

RESUMEN

Zhi-Ke-Bao pills (ZKB), a traditional Chinese medicine preparation composed of 13 herbs, is generally used to treat cough caused by external wind cold, phlegm, etc in clinical applications, and it plays a core role in relieving cough caused by COVID-19 and influenza in China. Till now, the understanding of its chemical constituents was dramatically limited due to its chemical complexity, restricting its clinical application or development. In this work, a developed ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) method, a targeted and non-targeted strategy and network pharmacology were used to comprehensively characterize the chemical compositions in ZKB and predict its mechanism against cough. A total of 164 compounds (148 targeted compounds and 16 non-targeted ones) were identified or tentatively characterized in ZKB, including 65 flavonoids, 25 alkaloids, 19 organic acids, 41 saponins, 9 coumarins, 2 phenylpropanoids, 2 anthraquinones, and 1 other types. Among them, 37 compounds were unambiguously identified by comparison to reference standards. Meanwhile, the fragmentation behaviors of five main chemical structure types were also summarized. 309 targets and two core signaling pathways of ZKB against cough were predicted by network pharmacology, including MAPK and PI3K-Akt signaling pathways. It was the first time to characterize the chemical compounds of ZKB and reveal its potential mechanism against cough, providing the material basis for further quality control or pharmacodynamic evaluation of ZKB.

17.
World J Urol ; 42(1): 364, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819448

RESUMEN

OBJECTIVES: Renal cell carcinoma (RCC) is infrequent among young adults. Few studies reported the outcome of RCC in young adults by pathological subtypes. The purpose of this study was to explore the clinicopathological features, survival outcomes and prognostic factors of young adult patients with clear cell (CCRCC) and non-clear cell renal cell carcinoma (NCCRCC). METHODS: This study included young adult patients aged 18-40 years who were diagnosed as renal cell carcinoma (RCC) between 2012 and 2022 at Peking University Third Hospital. All patients underwent either partial nephrectomy or radical nephrectomy, and some received adjuvant therapy. A comparative analysis was performed to investigate the differences in clinicopathological characteristics between the cohort of CCRCC and NCCRCC. Kaplan-Meier survival analysis was utilized to plot survival curves for young adults with RCC. The univariate and multifactorial prognostic analyses were conducted using the log-rank test and COX proportional hazards model. RESULTS: A total of 300 RCC patients aged 18-40 years were performed, of which 201 were diagnosed with CCRCC (67%) and 99 were diagnosed with NCCRCC(33%). The NCCRCC included 29 cases (9.7%) of chromophobe RCC, 28 cases (9.3%) of MiT family translocation RCC, 22 cases (7.3%) of papillary RCC, 11 cases (3.7%) of low malignant potential multifocal cystic RCC, and 6 cases of unclassified RCC (2.0%), 2 cases of mucinous tubule and spindle cell carcinoma (0.7%), and 1 case of FH-deficient RCC (0.3%).The mean age was 33.4 ± 6.1 years old. The overall and progression free 5-year survival rate was 99.1 and 95.3%, respectively. The NCCRCC cohort demonstrated a statistically significant decrease in progression-free survival (PFS) rate when compared to the CCRCC cohort (p < 0.001). There was no statistically significant difference observed in overall survival (OS) (p = 0.069). Pathological stage was a significant independent predictor for OS (p = 0.045). Pathological stage and nuclear grade were both independent predictors for PFS (p = 0.020; p = 0.005). CONCLUSIONS: The clinical and pathological features of young adults diagnosed with CCRCC exhibit notable distinctions from those of NCCRCC patients. The survival outcome was significantly influenced by the pathological stage, while both the nuclear grade and pathological stage had a significant impact on tumor progression. This study offered significant contributions to the understanding of the clinicopathological characteristics and prognostic determinants of renal cell carcinoma (RCC) in young adults.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/terapia , Neoplasias Renales/patología , Neoplasias Renales/mortalidad , Neoplasias Renales/terapia , Adulto , Masculino , Adulto Joven , Femenino , Pronóstico , Adolescente , Tasa de Supervivencia , Estudios Retrospectivos , Nefrectomía
18.
Immun Inflamm Dis ; 12(5): e1304, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804861

RESUMEN

BACKGROUND: Thyroid-associated ophthalmopathy (TAO) is the most common orbital disease in adults, potentially leading to disfigurement and visual impairment. However, the causes of TAO are not fully understood. IL-35+B cells are a newly identified regulatory B cells (Bregs) in maintaining immune balance in various autoimmune diseases. Yet, the influence of IL-35+Bregs in TAO remains unexplored. METHODS: This study enrolled 36 healthy individuals and 14 TAO patients. We isolated peripheral blood mononuclear cells and stimulated them with IL-35 and CpG for 48 h. Flow cytometry was used to measure the percentages of IL-35+Bregs. RESULTS: The percentage of circulating IL-35+Bregs was higher in TAO patients, and this increase correlated positively with disease activity. IL-35 significantly increased the generation of IL-35+Bregs in healthy individuals. However, B cells from TAO patients exhibited potential impairment in transitioning into IL-35+Breg phenotype under IL-35 stimulation. CONCLUSIONS: Our results suggest a potential role of IL-35+Bregs in the development of TAO, opening new avenues for understanding disease mechanisms and developing therapeutic approaches.


Asunto(s)
Linfocitos B Reguladores , Oftalmopatía de Graves , Interleucinas , Humanos , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Interleucinas/sangre , Interleucinas/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Oftalmopatía de Graves/inmunología , Oftalmopatía de Graves/sangre , Anciano
19.
Nat Commun ; 15(1): 4522, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806500

RESUMEN

The wet bulb temperature (Tw) has gained considerable attention as a crucial indicator of heat-related health risks. Here we report south-to-north spatially heterogeneous trends of Tw in China over 1979-2018. We find that actual water vapor pressure (Ea) changes play a dominant role in determining the different trend of Tw in southern and northern China, which is attributed to the faster warming of high-latitude regions of East Asia as a response to climate change. This warming effect regulates large-scale atmospheric features and leads to extended impacts of the South Asia high (SAH) and the western Pacific subtropical high (WPSH) over southern China and to suppressed moisture transport. Attribution analysis using climate model simulations confirms these findings. We further find that the entire eastern China, that accommodates 94% of the country's population, is likely to experience widespread and uniform elevated thermal stress the end of this century. Our findings highlight the necessity for development of adaptation measures in eastern China to avoid adverse impacts of heat stress, suggesting similar implications for other regions as well.

20.
ACS Appl Mater Interfaces ; 16(19): 25042-25052, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38706304

RESUMEN

Electrical double-layer transistors (EDLTs) have received extensive research attention owing to their exciting advantages of low working voltage, high biocompatibility, and sensitive interfacial properties in ultrasensitive portable sensing applications. Therefore, it is of great interest to reduce photodetectors' operating voltage and power consumption by utilizing photo-EDLT. In this study, a series of block copolymers (BCPs) of poly(4-vinylpyridine)-block-poly(ethylene oxide) (P4VP-b-PEO) with different compositions were applied to formulate polyelectrolyte with indigo carmine salt in EDLT. Accordingly, PEO conduces ion conduction in the BCP electrolyte and enhances the carrier transport capability in the semiconducting channel; P4VP boosts the photocurrent by providing charge-trapping sites during light illumination. In addition, the severe aggregation of PEO is mitigated by forming a BCP structure with P4VP, enhancing the stability and photoresponse of the photo-EDLT. By optimizing the BCP composition, EDLT comprising P4VP16k-b-PEO5k and indigo carmine provides the highest specific detectivity of 2.1 × 107 Jones, along with ultralow power consumptions of 0.59 nW under 450 nm light illumination and 0.32 pW under dark state. The results indicate that photo-EDLT comprising the BCP electrolyte is a practical approach to reducing phototransistors' operating voltage and power consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA