Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Nanomicro Lett ; 16(1): 195, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743205

RESUMEN

A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.

2.
Acta Biomater ; 181: 249-262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704113

RESUMEN

Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.


Asunto(s)
Antibacterianos , Quitosano , Poliuretanos , Poliuretanos/química , Poliuretanos/farmacología , Quitosano/química , Quitosano/farmacología , Conejos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Hemostasis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Hemostáticos/química , Hemostáticos/farmacología , Vendajes , Escherichia coli/efectos de los fármacos , Masculino
3.
ACS Catal ; 14(9): 6799-6806, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38721378

RESUMEN

Plasmonic photocatalysis demonstrates great potential for efficiently harnessing light energy. However, the underlying mechanisms remain enigmatic due to the transient nature of the reaction processes. Typically, plasmonic photocatalysis relies on the excitation of surface plasmon resonance (SPR) in plasmonic materials, such as metal nanoparticles, leading to the generation of high-energy or "hot electrons", albeit accompanied by photothermal heating or Joule effect. The ability of hot electrons to participate in chemical reactions is one of the key mechanisms, underlying the enhanced photocatalytic activity observed in plasmonic photocatalysis. Interestingly, surface-enhanced Raman scattering (SERS) spectroscopy allows the analysis of chemical reactions driven by hot electrons, as both SERS and hot electrons stem from the decay of SPR and occur at the hot spots. Herein, we propose a highly efficient SERS substrate based on cellulose paper loaded with either Ag nanoplates (Ag NPs) or AgPd hollow nanoplates (AgPd HNPs) for the in situ monitoring of C-C homocoupling reactions. The data analysis allowed us to disentangle the impact of hot electrons and the Joule effect on plasmon-enhanced photocatalysis. Computational simulations revealed an increase in the rate of excitation of hot carriers from single/isolated AgPd HNPs to an in-plane with a vertical stacking assembly, suggesting its promise as a photocatalyst under broadband light. In addition, the results suggest that the incorporation of Pd into an alloy with plasmonic properties may enhance its catalytic performance under light irradiation due to the collection of plasmon-excitation-induced hot electrons. This work has demonstrated the performance-oriented synthesis of hybrid nanostructures, providing a unique route to uncover the mechanism of plasmon-enhanced photocatalysis.

4.
ACS Appl Mater Interfaces ; 16(22): 29141-29152, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38773701

RESUMEN

Poor interfacial quality and low refractive index contrast (Δn) are critical challenges for the development of high-performance one-dimensional photonic crystals (1DPhCs) via solution methods that impede their optical efficiency. Herein, we introduce an innovative approach by hybridizing hollow SiO2 with poly(vinyl alcohol), referred to as PHS, followed by alternate assembly with TiO2 via spin-coating, achieving a 1DPhC with Δn = 0.76 at the wavelength of 550 nm. This method circumvents the need for high-temperature treatment and complex curing conditions, resulting in a 1DPhC with superior interfacial and optical characteristics. By adjusting the thickness of the PHS layers, we can finely tune the reflectance spectrum, attaining over 99% reflectance at the photonic band gap. Furthermore, 1DPhC demonstrates excellent adhesion to polycarbonate substrates and retains its optimal optical performance even after rigorous environmental testing, including hygrothermal cycles, exposure to hot water, friction, and solvent sonication. This research paves the way for the facile fabrication of high-performance 1DPhCs under mild conditions, offering new perspectives for photonic material processing.

5.
Nat Commun ; 15(1): 3076, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594248

RESUMEN

The rational use and conversion of energy are the primary means for achieving the goal of carbon neutrality. MXenes can be used for photothermal conversion, but their opaque appearance limits wider applications. Herein, we successfully develop visible-light transparent and UV-absorbing polymer composite film by solution blending the MXene with polyethylene and then vacuum pressing. The resulting film could be quickly heated to 65 °C under 400 mW cm-2 light irradiation and maintained over 85% visible-light transmittance as well as low haze (<12%). The findings of the indoor heat insulation test demonstrate that the temperature of the glass house model covered by this film was 6-7 °C lower than that of the uncovered model, revealing the potential of transparent film in energy-saving applications. In order to mimic the energy-saving condition of the building in various climates, a typical building model with this film as the outer layer of the window was created using the EnergyPlus building energy consumption software. According to predictions, they could reduce yearly refrigeration energy used by 31-61 MJ m-2, and 3%-12% of the total energy used for refrigeration in such structures. This work imply that the film has wide potential for use as transparent devices in energy-related applications.

6.
Carbohydr Polym ; 336: 122140, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670764

RESUMEN

Developing novel absorbent materials targeting high-efficiency, low-energy-consumption, and environmental-friendly oil spill cleanup is still a global issue. Porous absorbents endowed with self-heating function are an attractive option because of that they are able to in-situ heat crude oil and dramatically reduce oil viscosity for efficient remediation. Herein, we facilely prepared an eco-friendly multifunctional bacterial cellulose/MXene aerogel (P-SBC/MXene aerogel) for rapid oil recovery. Thanks to excellent full solar spectrum absorption (average absorbance = 96.6 %), efficient photo-thermal conversion, and superior electrical conductivity (electrical resistance = 36 Ω), P-SBC/MXene aerogel exhibited outstanding photothermal and electrothermal capabilities. Its surface temperature could quickly reach 93 °C under 1.0 kW/m2 solar irradiation and 124 °C under 3.0 V voltage respectively, enabling effective heat transfer toward spilled oil. The produced heat significantly decreased crude oil viscosity, allowing P-SBC/MXene aerogel to rapidly absorb oil. By combining solar heating and Joule heating, P-SBC/MXene aerogel connected to a pump-assisted absorption device was capable of achieving all-weather crude oil removal from seawater (crude oil flux = 630 kg m-2 h-1). More notably, P-SBC/MXene aerogel showed splendid outdoor crude oil separation performance. Based on remarkable crude oil/seawater separation ability, the versatile aerogel provides a promising way to deal with large-area oil spills.

8.
Int J Biol Macromol ; 266(Pt 2): 130996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531521

RESUMEN

Metal-organic frameworks (MOF)-polymer hybrid hydrogel solves the processable forming of MOF powder and energy consumption of uranium extraction. However, the hybrid hydrogel by conventional synthesis methods inevitably lead to MOF agglomeration, poor filler-polymer interfacial compatibility and slowly adsorption. Herein, we designed that ZIF-67 was implanted into the carboxymethyl cellulose/polyacrylamide (CMC/PAM) by network-repairing strategy. The carboxyl and amino groups on the surface of CMC/PAM drive the uniform growth of ZIF-67 inside the CMC/PAM, which form an array of oriented and penetrating microchannels through coordination bonds. Our strategy eliminate the ZIF-67 agglomeration, increase the interfacial compatibility between MOF and polymer. The method also improve the free and fast diffusion of uranium in CMC/PAM/ZIF-67 hydrogel. According to the experimental, these enhancements synergistically enabled the CMC/PAM/ZIF-67 have a maximum adsorption capacity of 952 mg g-1. The adsorption process of CMC/PAM/ZIF-67 fits well with pseudo-second-order model and Langmuir isotherm. Meanwhile, the CMC/PAM/ZIF-67 maintain a high removal rate (87.3 %) and chemical stability even during ten adsorption-desorption cycles. It is worth noting that the adsorption amount of CMC/PAM/ZIF-67 in real seawater is 9.95 mg g-1 after 20 days, which is an ideal candidate adsorbent for uranium extraction from seawater.


Asunto(s)
Resinas Acrílicas , Carboximetilcelulosa de Sodio , Estructuras Metalorgánicas , Agua de Mar , Uranio , Uranio/química , Uranio/aislamiento & purificación , Adsorción , Resinas Acrílicas/química , Carboximetilcelulosa de Sodio/química , Estructuras Metalorgánicas/química , Agua de Mar/química , Hidrogeles/química , Cinética , Purificación del Agua/métodos , Contaminantes Radiactivos del Agua/aislamiento & purificación , Contaminantes Radiactivos del Agua/química
9.
Mater Horiz ; 11(7): 1787-1796, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38315195

RESUMEN

Passive radiative cooling (PRC) that realizes thermal management without consuming any energy has attracted increasing attention. Unfortunately, polymer fibers with radiative cooling function fabricated via a facile, continuous, large-scale and eco-friendly method have been scarcely reported. Herein, polyethylene fibers containing directional microchannels (PFCDM) are facilely fabricated via melt extrusion and water leaching. Interestingly, fabric based on such hydrophobic PFCDM shows high sunlight reflectivity (93.6%), and mid-infrared emissivity (93.9%), endowing it with remarkable PRC performance. Compared with other reported examples, the as-prepared PFDCM fabric has the highest cooling power (i.e., 104.285 W m-2) and temperature drop (i.e., 27.71 °C). Furthermore, decent self-cleaning performance can keep the PFCDM fabric away from contamination and enable it to retain an excellent radiative cooling effect. The method proposed to fabricate PFCDM in this paper will widen the potential application of thermoplastic polyolefins in the field of radiative cooling.

10.
J Colloid Interface Sci ; 658: 772-782, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154240

RESUMEN

Aerogels with 3D porous structures have been attracting increasing attention among functional materials due to their advantages of being lightweight and high specific surface area. Precise control of the porous structure of aerogel is essential to improve its performance. In this work, polylactic acid (PLA) aerogels with distinctly different microstructures were fabricated by precisely controlling the phase separation behavior of the ternary solution system. Rheological and theoretical analyses have revealed that the interactions between polymer molecules, solvents and non-solvents play a crucial role in determining the nucleation and growth of poor olymer and rich polymer phases. By adjusting the non-solvent type and the solution composition, aerogels with spider network structure, bead-like connected microsphere structure, and cluster petal structure were obtained. Ideal spinodal phase separation conditions were obtained to produce aerogels with a homogeneous fiber network structure. The optimum PLA aerogel achieved an extremely porosity of 96 % and a high specific surface area of 114 m2/g, which rendered it with excellent triboelectric generation performance. Thus, this work provides fundamental insights into the precise regulation of the phase separation behavior and the structure of the aerogel, which can help boost the performance and expand the applications of PLA aerogels.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38040021

RESUMEN

Passive and active wearable heaters have received widespread attention due to their efficient utilization of solar energy and all-weather heating capabilities, but the current challenges are their preparation processes being time-consuming and equipment expensive. Herein, a simple and facilitated preparation method for the multifunctional wearable heater was developed, which springs Ag nanoparticles on the shish-kebab superstructure film via deposited melanin-like polydopamine as the adhesive. The light absorption ability of the resultant wearable heater in the visible region can be significantly enhanced by the addition of polydopamine, realizing a highly efficient photothermal conversion ability. Accordingly, it can achieve rapid warming ability whether passive heating (up to 45 °C about 60 s at 100 mW/cm2) or active heating (up to 72 °C about 40 s at 0.6 V), compared to ordinary cotton fabric. In addition, it can realize a 6.3 °C temperature difference with Cotton, showing excellent heat preservation ability. This study demonstrates a simple and low-cost approach for the prepared shish-kebab superstructure-based wearable heaters.

12.
Adv Sci (Weinh) ; 10(33): e2303767, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37845002

RESUMEN

Patients with metabolic syndrome (MetS) undergoing surgery are at high risk of developing peritoneal adhesions and other severe postoperative complications. However, the single shielding function and absence of physiological activity render conventional methods less useful in preventing adhesions in patients with MetS. To address this challenge, a convenient method is introduced for developing a novel tissue-adhesive hydrogel called oxidized dextran-metformin (ODE-ME) via Schiff base linkages. This injectable ODE-ME hydrogel exhibits excellent tissue-adhesive properties and various physiological functions, particularly enhanced antibacterial effects. Furthermore, in vivo experiments demonstrate that the hydrogel can effectively alleviate hyperglycemia, reduce excessive inflammation, and improve fibrinolytic activity in MetS mice, thereby preventing adhesions and promoting incisional healing. The hydrogel concurrently isolates injured tissues and lowers the blood glucose levels immediately after surgery in mice. Therefore, the ODE-ME hydrogel functions as a multifunctional barrier material and has potential for preventing postoperative peritoneal adhesions in patients with MetS in clinical settings.


Asunto(s)
Hidrogeles , Síndrome Metabólico , Ratones , Humanos , Animales , Dextranos , Adherencias Tisulares/etiología , Adherencias Tisulares/prevención & control , Adherencias Tisulares/metabolismo , Inflamación
13.
J Colloid Interface Sci ; 652(Pt B): 1645-1652, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666196

RESUMEN

Ultrathin MXene composite films, with their flexibility, metal-level conductivity, and multifunction compatibility, are an ideal choice for electromagnetic interference (EMI) shielding materials in future developments. Nonetheless, the dilemma between electrical conductivity and robustness in these composite films remains a challenge. Herein, an ammonium polyphosphate (APP) assisted interfacial multiple cross-linking strategy, achieved via simple solution blending and filtration, was employed to reinforce and toughen the "brick-mortar" layered MXene/bacterial cellulose (MBCA) films without compromising their conductivity and EMI shielding ability. The introduction of a small amount of APP leads to multiple interfacial interactions between MXene and bacterial cellulose, resulting in significant enhancements in mechanical strength (360.8 MPa), Young's modulus (2.8 GPa), fracture strain (17.3%), and toughness (34.1 MJ/m3). Concurrently, the MBCA film displayed satisfactory conductivity values of 306.7 S/cm and an EMI SE value of 41 dB upon optimizing the MXene content. Additionally, the MBCA film demonstrated a consistent, rapid-response photothermal conversion capability, achieving a photothermal conversion temperature of 97 °C under a light intensity of 200 mW/m2. Consequently, this tough and multifunctional EMI shielding film holds substantial promise for protecting electronic equipment.

14.
Polymers (Basel) ; 15(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37688273

RESUMEN

Thermoplastic polyurethane (TPU) materials have shown promise in tissue engineering applications due to their mechanical properties and biocompatibility. However, the addition of nanoclays to TPU can further enhance its properties. In this study, the effects of nanoclays on the microstructure, mechanical behavior, cytocompatibility, and proliferation of TPU/nanoclay (TPUNC) composite scaffolds were comprehensively investigated. The dispersion morphology of nanoclays within the TPU matrix was examined using transmission electron microscopy (TEM). It was found that the nanoclays exhibited a well-dispersed and intercalated structure, which contributed to the improved mechanical properties of the TPUNC scaffolds. Mechanical testing revealed that the addition of nanoclays significantly enhanced the compressive strength and elastic resilience of the TPUNC scaffolds. Cell viability and proliferation assays were conducted using MG63 cells cultured on the TPUNC scaffolds. The incorporation of nanoclays did not adversely affect cell viability, as evidenced by the comparable cell numbers between nanoclay-filled and unfilled TPU scaffolds. The presence of nanoclays within the TPUNC scaffolds did not disrupt cell adhesion or proliferation. The incorporation of nanoclays improved the dispersion morphology, enhanced mechanical performance, and maintained excellent biocompatibility. These findings suggest that TPUNC composites have great potential for tissue engineering applications, providing a versatile and promising scaffold material for regenerative medicine.

15.
Mater Horiz ; 10(11): 5060-5070, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37661692

RESUMEN

Incorporating radiative cooling photonic structures into the cooling systems of buildings presents a novel strategy to mitigate global warming and boost global carbon neutrality. Photonic structures with excellent solar reflection and thermal emission can be obtained by a rational combination of different materials. The current preparation strategies of radiative cooling materials are dominated by doping inorganic micro-nano particles into polymers, which usually possess insufficient solar reflectance. Here, a porous polymer metafoam was prepared with polycarbonate (PC) and polydimethylsiloxane (PDMS) using a simple thermally induced phase separation method. The metafoam exhibits strong solar reflectivity (97%), superior thermal emissivity (91%), and low thermal conductivity (46 mW m-1 K-1) due to the controllable morphology of the randomly dispersed light-scattering air voids. Cooling tests demonstrate that the metafoam could reduce the average temperature by 5.2 °C and 10.2 °C during the daytime and nighttime, respectively. In addition, the simulation of a cooling energy system of buildings indicates that the metafoam can save 3.2-26.7 MJ m-2 per year in different cities, which is an energy-saving percentage of 14.7-41%. The excellent comprehensive performances, including the passive cooling property, thermal insulation and self-cleaning of the metafoam makes it appropriate for practical outdoor applications, exhibiting its great potential as an energy-saving building cooling material.

16.
Mater Horiz ; 10(12): 5666-5676, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37767809

RESUMEN

Electronic skin (e-skin) is one of the most important components of future wearable electronic devices, whose sensing performances can be improved by constructing micropatterns on its sensitive layer. However, in traditional e-skins it is difficult to balance sensitivity and the pressure sensing range, and most micropatterns are generally prepared by some complex technologies. Herein, mushroom-mimetic micropatterns with 3D hierarchical architecture and an interdigital electrode are facilely prepared. The micropatterned sensitive layer is further developed through spraying carbon nanotube (CNT) dispersion on the thermoplastic polyurethane (TPU) film with mushroom-mimetic micropatterns (denoted as MMTC). Thanks to the "interlocking effect" between mushroom-mimetic micropatterns and the interdigital electrode in the as-prepared MMTC/interdigital electrode e-skin, the e-skin exhibits a high sensitivity (up to 600 kPa-1), a wide pressure sensing range (up to 150 kPa), a short response time (<20 ms) and excellent durability (15 000 cycles). The MMTC/interdigital electrode e-skin is capable of precisely monitoring health conditions via the as-acquired physiological parameters in real time. Moreover, such e-skins can be used to monitor gestures wirelessly, sense the trajectory of pressure stimuli and recognize Morse code under water. This study provides a cost-efficient, facile strategy to design e-skin for future-oriented wearable intelligent systems.


Asunto(s)
Agaricales , Dispositivos Electrónicos Vestibles , Presión , Piel , Percepción
17.
Int J Biol Macromol ; 253(Pt 4): 127079, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37769761

RESUMEN

Poly(lactic acid) (PLA) is one of the most promising bio-based polyester with great potential to replace for the petroleum-based polymers, which can significantly reduce greenhouse gas emissions. However, the inherent brittleness of PLA seriously restricts its broad applications. Herein, PLA/poly(ε-caprolactone) (PCL)/ethylene methyl acrylate-glycidyl methacrylate (EMA-GMA) ternary blends with different phase structures were prepared through reactive blending. The reactions between the epoxy groups of EMA-GMA and the carboxyl and hydroxyl end groups of PLA and PCL and were evidenced from the Fourier transform infrared spectroscopy, dynamic mechanical analysis and rheological results. The atomic force microscopy (AFM) images clearly revealed the formation of stack structure of the PCL and EMA-GMA minor phases in PLA/PCL/EMA-GMA (80/15/5) blend, and core-shell particle structures in PLA/PCL/EMA-GMA (80/10/10) and (80/5/15) blends. In terms of elongation at break and impact toughness, PLA/PCL/EMA-GMA (80/5/15) blend presents the best properties among all the compositions. Moreover, it also behaved excellent stiffness-toughness balance. The toughening mechanism can be ascribed to the formation of core-shell structure and the existence of interfacial adhesion in the ternary blends. This work can provide guide for the preparation and design of PLA-based partially renewable supertough materials that can compete with conventional petro-derived plastics.


Asunto(s)
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Metacrilatos
18.
Int J Biol Macromol ; 251: 126220, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572805

RESUMEN

High-toughness biodegradable poly(lactic acid) (PLA) has always been intensively pursued on the way of replacing traditional petroleum-based plastics. Regulating microstructures to achieve self-toughening holds great promise due to avoidance of incorporating other heterogeneous components. Herein, we propose a straightforward and effective way to tailor microstructures and properties of PLA through melt-stretching and quenching of slightly crosslinked samples. The melt stretching drives chains orientation and crystallization at high temperature, while the quenching followed can freeze the crystallization process to any stage. For the first time, we prepare a type of transparent and low-crystalline PLA filled with rod-like ß-form shish, which displays an outstanding tensile toughness, almost 17 times that of the conventional technique-processed one. This mechanical superiority is enabled by an integration of high ductility due to oriented chain network, and high tensile stress endowed by nanofibrous filler's role of ß-form shish. Furthermore, the mechanically toughened PLA is demonstrated to generate the richest micro-cracks and shear bands under loading, which can effectively dissipate the deformational energy and underlie the high toughness. This work opens a new prospect for the bottom-up design of high-performance bio-based PLA materials that are tough, ductile and transparent by precise microstructural regulation through scalable melt processing route.

19.
Small ; 19(46): e2303716, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37475506

RESUMEN

Harvesting electrical energy from water and moisture has emerged as a novel ecofriendly energy conversion technology. Herein, a multifunctional asymmetric polyaniline/carbon nanotubes/poly(vinyl alcohol) (APCP) that can produce electric energy from both saline water and moisture and generate fresh water simultaneously is developed. The constructed APCP possesses a negatively charged porous structure that allows continuous generation of protons and ion diffusion through the material, and a hydrophilicity-hydrophobic interface which results in a constant potential difference and sustainable output. A single APCP can maintain stable output for over 130 h and preserve a high voltage of 0.61 V, current of 81 µA, and power density of 82.4 µW cm-3 with 0.15 cm3 unit size in the water-induced electricity generation process. When harvesting moisture energy, the APCP creates dry-wet asymmetries and triggers the spontaneous development of electrical double layer with a current density of 1.25 mA cm-3 , sufficient to power small electronics. A device consisting of four APCP can generate stable electricity of 3.35 V and produce clean water with an evaporation rate of 2.06 kg m-2  h-1 simultaneously. This work provides insights into the fabrication of multifunctional fabrics for multisource energy harvesting and simultaneous solar steam generation.

20.
Sci Total Environ ; 892: 164601, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37269989

RESUMEN

The high-efficient, eco-friendly and low-energy cleanup of viscous crude oil spills is still a global challenge. Emerging absorbents with self-heating function are promising candidates due to that they can significantly decrease crude oil viscosity via in-situ heat transfer so as to accelerate remediation. Herein we developed a novel multifunctional magnetic sponge (P-MXene/Fe3O4@MS) with outstanding solar/electro-thermal performance by facilely coating Ti3C2TX MXene, nano-Fe3O4 and polydimethylsiloxane onto melamine sponge for fast crude oil recovery. Superior hydrophobicity (water contact angle of 147°) and magnetic responsivity allowed P-MXene/Fe3O4@MS to be magnetically driven for oil/water separation and easy recycling. Owing to excellent full-solar-spectrum absorption (average absorptivity of 96.5 %), effective photothermal conversion and high conductivity (resistance of 300 Ω), P-MXene/Fe3O4@MS possessed remarkable solar/Joule heating capability. The maximum surface temperature of P-MXene/Fe3O4@MS could quickly reach 84 °C under a solar irradiation of 1.0 kW/m2 and 100 °C after applying a voltage of 20 V. The generated heat induced a significant decrease of crude oil viscosity, enabling the composite sponge to absorb more than 27 times its weight of crude oil within 2 min (1.0 kW/m2 irradiation). More importantly, by means of the synergistic effect of Joule heating and solar heating, a pump-assisted absorption device based on P-MXene/Fe3O4@MS was able to realize the high-efficiency and all-day continuous separation of high-viscosity oil on water surface (crude oil flux = 710 kg m-2 h-1). The new-typed multifunctional sponge provides a competitive approach for dealing with large-area crude oil pollution.


Asunto(s)
Contaminación por Petróleo , Energía Solar , Viscosidad , Conductividad Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA