RESUMEN
The presence of light hydrocarbons (HCs) in diesel exhaust, specifically C3H6, significantly affects the performance of the state-of-the-art Cu-SSZ-13 zeolite NH3-SCR catalysts. It also leads to the formation of highly toxic HCN, posing risks to the environment and human health. In this work, the highly toxic HCN formation is inhibited, and the C3H6 resistance of Cu-SSZ-13 is improved by secondary metal modification via doping with rare earth/transition metal elements. Upon introduction of C3H6, the activity of Cu-SSZ-13 significantly decreases at medium-high temperatures. This is primarily due to the competitive reaction between C3H6 and NH3, which compete for the NH3 reductant required in the NH3-SCR reaction, resulting in the production of HCN. The unfavorable effect is alleviated on the modified catalysts due to their enhanced oxidation capabilities toward C3H6 and the HCHO intermediate, facilitating the complete oxidation of C3H6 to COx. This inhibits the undesirable partial oxidation reaction between C3H6 and NH3, thereby improving the activity of Cu-SSZ-13 at medium to high temperatures and significantly reducing the formation of highly toxic HCN.
Asunto(s)
Zeolitas , Zeolitas/química , Catálisis , Cobre/química , Amoníaco/química , Emisiones de Vehículos , Hidrocarburos/química , Oxidación-Reducción , Cianuro de Hidrógeno/químicaRESUMEN
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
RESUMEN
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
RESUMEN
OBJECTIVES: Recommendations from clinical practice guidelines (CPGs) for individuals with type 2 diabetes mellitus (T2DM) may be inconsistent, and little is known about their quality. Our aim in this study was to systematically review the consistency of globally available CPGs containing nutritional recommendations for T2DM and to assess the quality of their methodology and reporting. METHODS: PubMed, China Biology Medicine and 4 main guideline websites were searched. Four researchers independently assessed quality of the methodology and reporting using the Appraisal of Guidelines for Research and Evaluation, second edition (AGREE II) instrument and the Reporting Items for Practice Guidelines in HealThcare (RIGHT) checklist. RESULTS: Fifteen CPGs include 65 nutritional recommendations with 6 sections: 1) body weight and energy balance; 2) dietary eating patterns; 3) macronutrients; 4) micronutrients and supplements; 5) alcohol; and 6) specific, functional foods. Current nutritional recommendations for individuals with T2DM on specific elements and amounts are not completely consistent in different CPGs and fail to assign the specific supporting evidence and strength of recommendations. To use nutritional recommendations to guide and manage individuals with T2DM, it is important to address the current challenges by establishing a solid evidence base and indicating the strength of recommendations. Overall, 8 CPGs classified as recommended for clinical practice used AGREE II. Fifteen CPGs adhere to <60% of RIGHT checklist items. CONCLUSIONS: High-quality evidence is needed to potentially close knowledge gaps and strengthen the recommendation. The AGREE II instrument, along with the RIGHT checklist, should be endorsed and used by CPG developers to ensure higher quality and adequate use of their products.
Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , ChinaRESUMEN
Plant polysaccharides, as prebiotics, fat substitutes, stabilizers, thickeners, gelling agents, thickeners and emulsifiers, have been immensely studied for improving the texture, taste and stability of fermented foods. However, their biological activities in fermented foods are not yet properly addressed in the literature. This review summarizes the classification, chemical structure, extraction and purification methods of plant polysaccharides, investigates their functionalities in fermented foods, especially the biological activities and health benefits. This review may provide references for the development of innovative fermented foods containing plant polysaccharides that are beneficial to health.
RESUMEN
'Red Globe' table grapes are large, edible, seeded fruit with firm flesh that tastes good, but can have poor postharvest shelf-life. This study was conducted to explore the effects of products of Lactobacillus delbrueckii subsp. bulgaricus strain F17 and Leuconostoc lactis strain H52 on 'Red Globe' table grapes for the enhancement of shelf-life and improvement of grape quality characteristics during postharvest storage. Strains F17 and H52 were isolated from traditional fermented yak milk obtained in the Qinghai-Tibetan Plateau. Samples from untreated and treated grapes were analyzed for physicochemical, biochemical, and microbiological properties (weight loss, decay rate, pH, total soluble solids content, titratable acidity, total phenols, sensory evaluation, and microbial growth) for 20 days. The results demonstrated that supernatants from both strains significantly reduced weight loss, decay rate, aerobic mesophilic bacteria, and coliform bacteria counts; delayed maturity and senescence of table grapes; and reduced titratable acidity and total phenols. However, the supernatant of strain F17 was more effective and resulted in better sensory evaluations and had a significant inhibitory effect on yeast and molds by day 5. Meanwhile, the supernatant from strain H52 had a significant inhibitory effect on fungi over the whole storage period. In addition, the results of the Pearson correlation analysis suggested that weight loss, decay rate, total soluble solids content, and microorganisms were highly correlated with the sensory evaluation data and quality of postharvest grapes when treated with the products of strain F17. On the basis of these data and sensory organoleptic qualities, the supernatant containing products from strain F17 had the best potential as a biopreservative to improve the postharvest quality of 'Red Globe' table grapes.
RESUMEN
In this work, we investigate differences in gut microbial diversity driven by drug use or by the widely used methods for drug cessation: methadone maintenance treatment (MMT) and compulsory detention (CD). Methods: 99 participants (28 CD participants, 16 MMT patients, 27 drug users, and 28 healthy controls) were selected using strict inclusion criteria. Nutritional intake and gut microbial diversity were analyzed with bioinformatics tools and SPSS 20.0. Results: Alpha diversity was not significantly different among groups, whereas beta diversity of gut microbiota and nutrient intake were significantly higher among MMT patients. Taxa were unevenly distributed between groups, with drug users having the highest proportion of Ruminococcus and MMT patients having the highest abundance of Bifidobacterium and Lactobacillus. Conclusion: Drug use, cessation method, and diet contribute to shaping human gut communities. High beta diversity among MMT patients is likely driven by methadone use and high nutrient intake, leading to increased orexin A and enrichment for beneficial bacteria, while diversity in CD participants is largely influenced by diet.
RESUMEN
Thermal treatment has been utilized to improve the functional properties of proteins for many years. In this study, we aimed to investigate the effect of sodium triphosphate (Na5P3O10) on particle size and size distribution of heat-induced whey protein concentrate (WPC) aggregates under different processing conditions. The results showed that high Na5P3O10 level (>0.5%, w/w), long heating time (>15 min), and alkaline condition (pH 8-8.5) facilitated formation of large particles (>10 µm). The WPC aggregates with small-to-medium particle size (1-3 µm) that are suitable to be applied as a fat replacer were obtained by heating the WPC solution (8%, w/v) containing 0.4% (w/w) Na5P3O10 at 85°C for 5 min. We conclude that thermal treatment of whey protein concentrate added with Na5P3O10 can obtain whey protein products with different particle sizes for certain applications.