Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Sci Total Environ ; 953: 176144, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39250980

RESUMEN

High levels of dissolved inorganic nitrogen (DIN) in groundwater pose challenges for regions like northern Anhui Province, China, where groundwater is a crucial domestic resource. This study utilized modern geostatistics to explore the spatial and temporal dynamics of DIN in groundwater. Significant seasonal influences on DIN concentrations were identified: ammonium peaks during wet season driven by agricultural activities, while nitrate peaks during the dry season primarily influenced by municipal inputs. This study established a Bayesian Maximum Entropy - Random Forest (BME-RF) model based on Land Use/Land Cover data to infer the spatio-temporal performance of DIN, achieving an interpretation rate above 90 %. It also highlighted the role of hydrogeological conditions and aquifer types in the evolution of DIN. By employing a DIN environmental interaction model, it further analyzed the eco-hydrological drivers and seasonal trends affecting DIN variability, enhancing the understanding of groundwater nitrogen dynamics and their link to environmental factors with low consumption. SYNOPSIS: This study reveals seasonal shifts in groundwater DIN, links them to human activity, and uses the BME model to guide targeted nitrogen fluctuation.

2.
Sci Total Environ ; 951: 175608, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173763

RESUMEN

The COVID-19 pandemic has profoundly impacted human activities and the environment globally. The lockdown measures have led to significant changes in industrial activities, transportation, and human behavior. This study investigates how the lockdown measures influenced the distribution of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Chaohu Lake, a semi-enclosed lake. Surface sediment samples were collected in summer of 2020 (lockdown have just been lifted) and 2022 and analyzed for 16 priority PAHs. The range of ΣPAHs concentrations remained similar between 2020 (158.19-1693.64 ng·g-1) and 2022 (148.86-1396.54 ng·g-1). Among the sampling sites, the west lake exhibited similar PAHs concentrations characteristics over the two years, with higher levels observed in areas near Hefei City. However, the east lake exhibited increased ΣPAHs concentrations in 2022 compared to 2020, especially the area near ship factory. PAHs source analysis using principal component analysis-multiple linear regression (PCA-MLR) revealed an increased proportion of petroleum combustion sources in 2022 compared to 2020. The isotope analysis results showed that organic matter (OM) sources in the western lake remained relatively stable over the two years, with sewage discharge dominating. In contrast, the eastern lake experienced a shift in OM sources from sewage to C3 plants, potentially contributing to the increased PAH levels observed in the eastern lake sediments. Ecological risk assessment revealed low to moderate risk in both 2020 and 2022. Health risk evaluation indicated little difference in incremental lifetime cancer risk (ILCR) values between the two years, with only benzo[a]pyrene (BaP) posing a high risk among the carcinogenic PAHs. Children generally faced higher health risks compared to adults. This study reveals pandemic-induced changes in PAH pollution and sources in lake sediments, offering new insights into the impact of human activities on persistent organic pollutants, with implications for future pollution control strategies.


Asunto(s)
COVID-19 , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , China , Lagos/química , Sedimentos Geológicos/química , COVID-19/epidemiología , Contaminantes Químicos del Agua/análisis , Humanos
3.
Front Pharmacol ; 15: 1331967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070799

RESUMEN

Hepatitis B virus (HBV)-related liver disease poses a major threat to human health worldwide. Although interferon and nucleoside analogues are commonly administered for treating chronic HBV infection, their use is limited by considerable side effects, drug resistance and incapacity for HBV elimination. Hence, novel HBV therapeutics are urgently required. For numerous years, traditional Chinese botanical drugs have been widely used to treat HBV-related diseases. The natural metabolites derived from these traditional drugs exhibit significant anti-HBV effects and serve as potential novel drugs for treating HBV. For overall understanding the therapeutic potential of these metabolites, the anti-HBV effects and mechanisms of action of 107 natural metabolites are summarized in this article. Mechanistically, these natural metabolites exert their anti-HBV effects by influencing the expression and function of host and/or viral genes, which differs from the mechanism of action of nucleoside analogues. Indeed, combining natural metabolites with nucleoside analogues can exert synergistic effects. Accordingly, natural metabolites or their chemically modified derivatives represent potential novel drugs and adjuvants for anti-HBV treatment.

4.
J Thorac Dis ; 16(6): 4000-4010, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38983148

RESUMEN

Background: The value of ST-elevation in lead augmented vector right (aVR) remains controversial in clinical practice. This study aimed to investigate the association of simultaneous ST-elevation in lead aVR and III with angiographic findings and clinical outcomes in patients with non-ST-elevation acute coronary syndromes (NSTEACS). Methods: In this observational study, patients who had been diagnosed with NSTEACS and presented with ST-elevation in lead aVR and without ST-elevation in any other two contiguous leads were enrolled from January 2018 to June 2019. Demographic, baseline clinical, angiographic and interventional characteristics as well as clinical outcomes were collected and recorded on standardized case report forms. Results: A total of 157 patients meeting the criteria were finally enrolled in this study and classified into two groups according to the presence of ST-elevation in lead III. Patients in the two groups were similar in average age and previous history of hypertension, diabetes mellitus, hyperlipidemia, chronic kidney disease, stroke, and peripheral vascular diseases (all P>0.05). Patients with ST-elevation in lead III tended to present with myocardial hypertrophy in the echocardiography (P=0.02). The cases with ST-elevation in lead III showed higher high sensitivity troponin T (hs-TnT; P=0.08) and creatinine kinase MB isoenzyme (CK-MB; P<0.01) whereas those without ST-elevation in lead III showed higher N-terminal pro brain natriuretic peptide (NT-proBNP; P=0.02). Of note, patients with ST-elevation in lead III presented with more ST-depression in multiple leads [especially in lead I, augmented vector left (aVL), V3-V6] as well as higher degree of ST-depression (all P<0.05) and were more likely to develop multi-vessel and left main trunk (LM) lesions (P=0.04), with 20% of the cases having a LM lesion and 60% having triple vessel lesions. Patients with ST-elevation in lead III were at increased risk of 3-year major adverse cardiovascular events (MACEs), despite no significant statistical difference between the two groups (hazard ratio =1.29; P=0.26). Conclusions: The NSTEACS cases with simultaneous ST-elevation in lead III and aVR tended to present with more multiple leads with ST-depression, higher degree of ST-depression, and more LM or multi-vessel lesions, suggesting a broader range of severe myocardial ischemia. The concurrent presentation of ST-elevation in lead III and aVR may play a vital role in the diagnosis, risk-stratification, and prediction of poor prognosis during the management of NSTEACS patients.

5.
Huan Jing Ke Xue ; 45(6): 3196-3204, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897743

RESUMEN

The Guohe River Basin in Anhui Province was selected as the research area for this study. By collecting surface water, shallow groundwater, and middle-deep groundwater samples, various hydrochemical parameters and stable isotopes of water in different water bodies were analyzed using methods such as the Gibbs diagram, ion ratios, and MixSIAR model to reveal and quantify the transformation relationships between these water bodies. The results indicated that both surface water and groundwater in the study area were predominantly neutral to weakly alkaline. The hydrochemical types of surface water were mainly characterized by Cl·SO4·HCO3-Na and Cl·SO4-Na types, whereas the shallow groundwater exhibited HCO3-Ca·Mg and HCO3-Mg·Na types, and the middle-deep groundwater was of the Cl·HCO3-Na type. The hydrochemical characteristics of various water bodies were influenced by multiple factors such as rock weathering, evaporation concentration, and positive cation exchange. The distribution characteristics of δ18O and δ2H values in surface water and groundwater indicated that atmospheric precipitation was the main water source. The δ18O and δ2H in groundwater were significantly correlated with K+, Na+, Cl-, SO42-, and NO3-. According to the analysis using the MixSIAR model, the contribution of atmospheric precipitation to surface water was 46.5 %, whereas the contribution from shallow groundwater was 53.5 %. The sources of shallow groundwater were identified as atmospheric precipitation (57.4 %) and surface water (42.6 %), and the main source of supply for middle-deep groundwater was lateral flow from upstream groundwater.

6.
Sci Total Environ ; 944: 173600, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38823706

RESUMEN

The waste slag known as jarosite residue (JR) and arsenic sulfide residue (ASR) were produced following the creation of zinc by hydrometallurgical procedures. The increasing annual zinc mining has led to growing pressure to dispose of the resulting JR and ASR from zinc smelting, making it crucial to assess their environmental impact and feasibility for utilization. The main components, distribution characteristics of elements, and potential environmental risks of zinc smelting wastes are studied through toxicity leaching tests, sequential extraction procedures, and various characterization technologies such as XRF, XRD, and SEM-EDS. The mineral compositions of JR are natrojarosite, franklinite, and gunningite, and zinc mainly adheres to the crevices of the natrojarosite mineral. Meanwhile, the ASR of flocculent structures is composed of orpiment, greenockite, arsenic oxide, and calvertite, and As appears in the form of the S-As-O phase. The Zn, Cu, and Cd in JR were dominated by exchangeable bound (81.53-96.6 %), and the main form of As, Cd, Se, and Tl in ASR was organic matter bound (87.0-99.21 %). The Risk Assessment Code (RAC) method confirmed the risk of Cd, Cu, Zn, and Mo in JR is high, while the risk of Cd, Pb, and Cr in ASR is moderate. Compared to the standard value of "Identification Standard for Toxicity of Hazardous Waste Leaching (GB5085.3-2007)", the leachate concentrations of Zn in JR as well as Cd and As in ASR were exceeded, suggesting that the JR and ASR were in the type of hazardous waste and posed an environmental risk. The study provides theoretical guidance for the future rational management and effective utilization of hazardous waste.

7.
Environ Pollut ; 356: 124365, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871166

RESUMEN

Biochar, a carbon-rich material with a unique surface chemistry (high abundance of surface functional groups, large surface area, and well-distributed), has shown great potential as a sustainable solution for industrial wastewater treatment as compared to conventional industrial wastewater treatment techniques demand substantial energy consumption and generate detrimental byproducts. This critical review emphasizes the surface functionalities formation and development in biochar to enhance its physiochemical properties, for utilization in antibiotics removal. Factors affecting the formation of functionalities, including carbonization processes, feedstock materials, operating parameters, and the influence of pre-post treatments, are thoroughly highlighted to understand the crucial role of factors influencing biochar properties for optimal antibiotics removal. Furthermore, the research explores the removal mechanisms and interactions of biochar-based surface functionalities, hydrogen bonding, encompassing electrostatic interactions, hydrophobic interactions, π-π interactions, and electron donor and acceptor interactions, to provide insights into the adsorption/removal behavior of antibiotics on biochar surfaces. The review also explains the mechanism of factors influencing the removal of antibiotics in industrial wastewater treatment, including particle size and pore structure, nature and types of surface functional groups, pH and surface charge, temperature, surface modification strategies, hydrophobicity/hydrophilicity, biochar dose, pollutant concentration, contact time, and the presence of coexisting ions and other substances. Finally, the study offers reusability and regeneration, challenges and future perspectives on the development of biochar-based adsorbents and their applications in addressing antibiotics. It concludes by summarizing the key findings and emphasizing the significance of biochar as a sustainable and effective solution for mitigating antibiotics contamination in industrial wastewater.


Asunto(s)
Antibacterianos , Carbón Orgánico , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico/química , Aguas Residuales/química , Antibacterianos/química , Contaminantes Químicos del Agua/química , Adsorción , Eliminación de Residuos Líquidos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Purificación del Agua/métodos
8.
J Environ Manage ; 361: 121266, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815423

RESUMEN

Within the Huaihe River Basin, Guohe River, as its second-largest tributary, serves as a critical water supply source. Recent industrial and agricultural advancements have led to increased trace element contamination, adversely impacting the water quality within Guohe River Basin. Therefore, this study aimed to investigate the distribution characteristics, sources, water quality and risk assessment of trace elements in the surface water, groundwater, and sediments across the basin. The results showed that the spatial distribution of trace elements in the surface water and groundwater of Guohe River Basin was that most of the high concentrations appeared in Qiaocheng District of Bozhou City, the mean concentration of Fe in Guohe River sediments was the highest, the mean concentration of Sb was the lowest. The PMF source analysis results showed that the main source of trace elements in Guohe River Basin was natural geological processes, followed by human activities. The sodium adsorption ratio (SAR) indicated that the surface water samples of Guohe River in two seasons had high sodium and salinity hazards. The water quality index (WQI) showed that surface water and groundwater samples in the northwestern of Guohe River Basin had poor water quality. The results of the risk assessment showed that As and Mn posed great ecological risks to surface water and groundwater, respectively, and that F- was the pollutant with the most potential health risk hazard in the basin. The Geo-accumulation index (Igeo) results showed that Cd, Se and As should be taken seriously as the main contaminants of the sediments in Guohe River Basin. KEYWARDS: Trace elements; Source analysis; Sodium adsorption ratio; Water quality index; Risk assessment; Geo-accumulation index.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Ríos , Oligoelementos , Contaminantes Químicos del Agua , Calidad del Agua , Medición de Riesgo , Ríos/química , Oligoelementos/análisis , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , China
9.
Sci Total Environ ; 933: 173125, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734095

RESUMEN

The abuse of antibiotics has caused the accumulation of antibiotic residues in environmental media, threatening the ecosystem and human health. Many studies on the distribution of aqueous antibiotics have been reported. However, the pollution status of antibiotics in the environment in Chinese herbal medicine planting areas is rarely comprehensively clarified, resulting in the lack of updated pollution data and conducive suggestions for ecological cultivation and sustainable development of Chinese herbal medicine. Thus, we comprehensively investigated the distribution, profiles, sources, and risks of the antibiotics in the surface water of an important tributary of the Huaihe River Basin, located in Bozhou City, a significant Chinese herbal medicine planting region. Solid-phase extraction coupled with an ultra-performance liquid chromatography-tandem mass spectrometer (SPE-UPLC-MS) was utilized to detect the antibiotics in the water. 27 kinds of antibiotics were identified with total concentrations ranging from 75.01 to 1737.99 ng·L-1, with doxycycline (DC) and doxycycline hydrochloride (DCH) possessed the highest concentration. And DC, DCH, oxilinic acid (OA), sulfamethoxazole (SMZ), clarithromycin (CLA), and roxithromycinum (ROX) were the main antibiotics detected in this basin. Correlation analysis and principal component analysis (PCA) indicated that animal husbandry was the primary source of antibiotics. Furthermore, the ecological risk assessment revealed that certain antibiotics could seriously threaten the survival of aquatic organisms, implying that local Chinese herbal medicines might be at similar growth risk. The drinking risk assessment showed that antibiotics in the water posed low risks for human, and children faced a greater drinking risk than adults. The study can help to facilitate the management of aqueous antibiotic pollution for the ecological cultivation and safe production of Chinese herbal medicine.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Ríos/química , China , Medicamentos Herbarios Chinos
10.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611783

RESUMEN

The increasing presence of arsenic-containing impurities within Cu ores can adversely affect the smelting process and aggravate the environmental impact of slag tailing. This study investigates the geochemical, mineralogical, and chemical speciation characteristics to better understand the association and environmental stability of metal(loid)s in copper slag tailing. The results indicate that the predominant chemical compositions of the selected slag tailing are Fe2O3 (54.8%) and SiO2 (28.1%). These tailings exhibit potential for multi-elemental contamination due to elevated concentrations of environmentally sensitive elements. Mineral phases identified within the slag tailings include silicate (fayalite), oxides (magnetite and hematite), and sulfides (galena, sphalerite, arsenopyrite, and chalcopyrite). The consistent presence of silicate, iron, arsenic, and oxygen in the elemental distribution suggests the existence of arsenic within silicate minerals in the form of Si-Fe-As-O phases. Additionally, arsenic shows association with sulfide minerals and oxides. The percentages of arsenite (As(III)) and arsenate (As(V)) within the selected slag tailings are 59.4% and 40.6%, respectively. While the slag tailings are deemed non-hazardous due to the minimal amounts of toxic elements in leachates, proper disposal measures should be taken due to the elevated carbonate-bound levels of As and Cu present in these tailings.

11.
Sci Total Environ ; 930: 172664, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38653413

RESUMEN

Landfilling is a globally prevalent method for managing municipal solid waste disposal. Nonetheless, the potential for serious contamination and the significant regional disparities in the leachate produced pose varying degrees of risks to groundwater quality. Previous studies have focused on a single landfill or the same geo-climatic conditions, with a limited number of samples having resulted in a narrow distribution of landfill age and scale, which prevents the description of the pattern of change in landfill age and scale. As well as the effect of this change on the contaminants in the landfill leachate and surrounding groundwater is still unclear. Therefore, we sampled and analyzed leachate and surrounding groundwater from 62 landfills with different landfill ages, scales, and operating conditions in a region with dense and varied topography and climate. Aim to explore the effects of different landfill ages, scales, and operating conditions on contaminants in leachate and surrounding groundwater. Findings indicate that pollutant profiles in different media are influenced by the age, scale, and operational status of the landfill, and the impact of leachate on pollutant types and concentrations in groundwater is limited. A significant correlation exists between the concentration of contaminants in the groundwater affected by leaching from the impermeable layer and the age and scale of the landfill when compared to the leachate. The contamination potentials posed by different pollutants vary across environmental media. Total dissolved solids and NH4+-N in leachate presented high contamination potentials, whereas elemental metalloids (Mn, Al, Ba, and Fe) in the surrounding groundwater posed high environmental concerns. These insights furnish new avenues for monitoring, identification, and safeguarding against pollutants in landfills and proximate groundwater, which is imperative for the sustainable management of municipal waste.

12.
Environ Res ; 251(Pt 2): 118645, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485077

RESUMEN

Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.


Asunto(s)
Antimonio , Carbón Orgánico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Antimonio/análisis , Antimonio/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Descontaminación/métodos , Suelo/química
13.
Environ Geochem Health ; 46(3): 78, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367092

RESUMEN

Industrial by-products are stored in large quantities in the open, leading to wasted resources and environmental pollution, and the natural environment is similarly faced with phosphate depletion and serious water and soil pollution. This study uses these by-products to produce a new sludge/biomass ash ceramsite that will be used to adsorb nitrogen and phosphorus from wastewater, and solidify heavy metals in the soil while releasing Olsen P. The sludge/biomass ash ceramsites are made using sewage sludge and biomass ash in a certain ratio calcined at high temperatures and modified for the adsorption of nitrogen and phosphorus from wastewater. Sludge/biomass ash ceramsites before and after phosphorus adsorption, biochar and biomass ash were compared to analyze their heavy metal adsorption capacity and potential as phosphate fertilizer. After phosphorus adsorption, the sludge/biomass ash ceramsites released effective phosphorus steadily and rapidly in the soil, with a greater initial release than biochar and biomass ash, and the ceramsites were in a granular form that could be easily recycled. Biochar and biomass residue, due to their surface functional groups, are better at solidifying heavy metals than sludge/biomass ash ceramsites. Biochar, biomass ash and sludge/biomass ash ceramsites significantly reduced the concentrations of Cd, Cu, Pb and Zn in the soil. Correlation analysis demonstrated that there was a synergistic relationship between the increase in soil Olsen P content and the change in pH, with the increase in soil Olsen P content and the increase in pH contributing to heavy metal solidification.


Asunto(s)
Mezclas Complejas , Metales Pesados , Contaminantes del Suelo , Aguas del Alcantarillado/química , Aguas Residuales , Biomasa , Metales Pesados/análisis , Carbón Orgánico/química , Suelo/química , Fósforo/análisis , Fosfatos/análisis , Nitrógeno/análisis , Contaminantes del Suelo/análisis
14.
Environ Sci Pollut Res Int ; 30(59): 123466-123479, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987974

RESUMEN

Groundwater is an essential freshwater resource utilized in industry, agriculture, and daily life. In the Huaibei Plain (HBP), where groundwater significantly influences socio-economic development, information about its quality, hydrochemistry, and related health risks remains limited. We conducted a comprehensive groundwater sampling in the HBP and examined its rock characteristics, water quality index (WQI), and potential health risks. The results revealed that the primary factors shaping groundwater hydrochemistry were rock dissolution and weathering, cation exchange, and anthropogenic activities. WQI assessment indicated that only 73% of the groundwaters is potable, as Fe2+, Mn2+, NO3-, and F- contents in the water could pose non-carcinogenic hazards to humans. Children were more susceptible to these health risks through oral ingestion than adults. Uncertainty analysis indicated that the probabilities of non-carcinogenic risk were approximately 57% and 31% for children and adults, respectively. Sensitivity analysis further identified fluoride as the primary factor influencing non-carcinogenic risks, indicating that reducing fluoride contamination should be prioritized in future groundwater management in the HBP.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Humanos , Monitoreo del Ambiente/métodos , Fluoruros/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Agua Subterránea/química , China , Medición de Riesgo
15.
Am J Cardiol ; 209: 12-19, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37856915

RESUMEN

A total of 172 consecutive patients with sympathetic paroxysmal atrial fibrillation who received cryoballoon (CB) ablation from 2020 to 2021 were retrospectively analyzed in this study. Catheter coaxiality and anatomic features of pulmonary veins (PVs) on computed tomography images were explored by several parameters and their influence on the cryoablation results was then analyzed. The rate of incomplete CB occlusion was significantly higher for inferior than superior PVs. A multivariate analysis revealed that a short distance (<6.3 mm) from PV ostium to first branch (D-PVB) and a small angle (<32.5°) of first branch were independent predict factors for an incomplete CB occlusion in right inferior PVs (RIPVs). A combination of D-PVB and angle of first branch could elevate the predictor value for an incomplete balloon occlusion with a sensitivity of 0.85 and specificity of 1.0 for RIPVs. For PVs with a perfect balloon occlusion, the best catheter coaxiality was observed in right superior PV while the worst catheter coaxiality was observed in RIPV. A more aggressive catheter manipulation with a "7" or "reverse-U" shape of long sheath could obtain a better catheter coaxiality compared with conventional manipulation strategy for RIPVs. In Conclusion, a short D-PVB and a small angle of first branch were independent predict factors for an incomplete CB occlusion in RIPVs. A more aggressive catheter manipulation strategy was recommended to achieve a complete balloon occlusion and a better catheter coaxiality for RIPVs.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Criocirugía , Venas Pulmonares , Humanos , Fibrilación Atrial/cirugía , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Estudios Retrospectivos , Criocirugía/métodos , Catéteres , Resultado del Tratamiento
16.
J Environ Manage ; 347: 119018, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748293

RESUMEN

Soil contamination and its subsequent impact on the food chain is a pressing challenge in the present day. The application of biochar has demonstrated a significant and positive effect on soil health, thereby enhancing plant growth and development. However, the application of biochar (BC) produced from negative pressure-induced carbonization to mitigate metal(loid) contamination is a new strategy that has been studied in current research. Results depicted that the application of biochar derived from the negative pressure carbonization (vacuum-assisted biochar (VBC) has a significant (p ≤ 0.05) positive impact on plant growth and physiological characteristics by influencing immobilization and speciation of metal(loid) in the soil system. Moreover, the interactive effect of VBC on physiological characteristics (photosynthesis, gas exchange, and chlorophyll contents) and antioxidant activities of maize (Zea mays L.) was significantly (p ≤ 0.05) positive by confining the translocation and movement of metal(loid)s to the aerial part of the maize plant. X-ray diffraction (XRD) provided information on the structural and chemical changes induced by the VBC-500 °C explaining metal(loid) adsorption onto mineral surfaces and complexation that can affect their mobility, availability, and toxicity in the contaminated soil. Fourier transform infrared spectroscopy (FTIR) further provided a more detailed understanding of the metal(loid)s and biochar complexation mechanisms influenced by VBC-based functional groups -OH, C-Hn, -COOH, CO, C-O-C, CC, C-O, C-H, OH, and C-C in the binding process. These results suggest that the application of biochar prepared at 500 °C under negative pressure-induced carbonization conditions to the soil is the most efficient way to reduce the uptake and transfer of metal(loid)s by influencing their mobility and availability in the soil-plant system.


Asunto(s)
Contaminantes del Suelo , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Metales/análisis , Suelo/química , Zea mays
17.
Exp Biol Med (Maywood) ; 248(15): 1302-1312, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37452714

RESUMEN

Neutrophil extracellular traps (NETs) are network-like structures of chromatin filaments decorated by histones, granules, and cytoplasmic-derived proteins expelled by activated neutrophils under multiple pathogenic conditions. NETs not only capture pathogens in innate immunity but also respond to sterile inflammatory stimuli in atherosclerosis, such as lipoproteins and inflammatory cytokines. Atherosclerosis is a lipid-driven chronic inflammatory disease characterized by the accumulation and transformation of inflammatory cells, and smooth muscle cells in the intimal space. NETs-derived extracellular components possess toxic and proinflammatory properties leading to cellular dysfunction and tissue damage, which may establish a link among lipid metabolism, inflammatory immunity, and atherosclerosis. In this review, we discuss recent advances regarding the role of NETs engaged in the pathogenesis of atherosclerosis, particularly focusing on the interaction with lipids and inflammasomes, crosstalk with smooth muscle cells and inflammatory cells, and the association with aging. We also evaluate the current knowledge on the potential of NETs as biomarkers and therapeutic targets for atherosclerosis and its related diseases in clinical practice.


Asunto(s)
Aterosclerosis , Trampas Extracelulares , Humanos , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Inmunidad Innata , Aterosclerosis/patología , Histonas/metabolismo
18.
Environ Sci Pollut Res Int ; 30(40): 92842-92858, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495807

RESUMEN

The unprecedented stride of urbanization and industrialization has given rise to anthropogenic input of tiny particulates into the air. Urban particulate matter (PM) armored with potentially toxic metals (PTMs) could be lethal to the environment and human health. Therefore, the present study was planned to investigate the spectroscopic fingerprinting, pollution status and health risk of PM-associated PTMs collected from ten functional areas of Lahore, Pakistan. The diverged results of studied qualitative and quantitative analyses showed distinct compositional and pollution characteristics of PTMs in urban PM with respect to selected functional areas. The XRD results evident the fractional presence of metal-containing minerals, i.e., pyrite (FeS2), calcite (CaCO3), zinc sulfate (ZnSO4), and chalcostibite (CuSbS2). Several chemical species of Zn, Pb, and As were found in PM of various functional areas. However, morphologies of PM showed anthropogenic influence with slight quantitative support of PTMs presence. The cumulative representation of PTMs pollution of all selected areas depicted that Cd was heavily polluted (Igeo=3.21) while Cr (Igeo=1.82) and Ni (Igeo=2.11) were moderately polluted PTMs. The industrial area having high pollution status of Cd (Igeo=5.54 and EF=18.07), Cu (Igeo=6.4 and EF=32.61), Cr (Igeo=4.03 and EF=6.53), Ni (Igeo=5.7 and EF=20.17), and Zn (Igeo=4.87 and EF=11.27) was prominent among other studied areas. The PTMs were likely to pose a high non-cancerous risk in IndAr (HI = 7.48E+00) and HTV (HI = 1.22E +00) areas predominantly due to Zn with HQ > 1. However, Cr was prominent to cause cancerous risks with values beyond the tolerable range (1.00E-04 to 1.00E-06).


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Humanos , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Cadmio/análisis , Metales Pesados/análisis , Medición de Riesgo , China
19.
RSC Adv ; 13(32): 22216-22225, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37492512

RESUMEN

Physical separation is the most widely used technology concerning waste printed circuit board (WPCB) recycling in practical terms. The dust generated from the process poses a significant environmental and human health risk. Amounts of heavy metals in dust present in each processing zone of the workshop showed differences. However, to date, few studies have reported this. The mean metal concentrations in workshop dust from different processing zones were investigated in this study and it was found that Zn, Pb, and Sn appeared in higher levels than other metals, followed by Mn > Cr > Ni > V > As > Cd. The enrichment factors (EFs) ranged from 1.15 to 207.4, and decreased in the order of Cu > Sn > Pb > Zn > Cd > Cr > Ni > V > As, which was exactly consistent with the geo-accumulation index values. The comparison of the EF values of workshop dust in and outside showed that the EFs in workshop dust were mostly smaller. Metals in the dust of the crushing zone (CrZ) showed significant and strong enrichment. The non-carcinogenic risk for different processing zones was all less than 1, which is recognized safety for people's health. The total carcinogenic risk from Cr, and Ni in all zones and As in the CrZ exposure was not negligible. The carcinogenic and non-carcinogenic risks in the CrZ were significantly higher than in the other zones. Masks to filter dust, a ventilation system, daily work hours reduction, and automation improvement was proposed for reducing workers' exposure to heavy metal.

20.
Water Environ Res ; 95(7): e10905, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37350381

RESUMEN

Excessive ammonium and phosphate in aquatic settings may produce major eutrophication. Adsorbents can be used to reduce the eutrophication of natural water bodies. In this study, a sustainable and efficient ceramic adsorbent (sludge/biomass ash ceramsite [SBC]) was prepared by using sludge and biomass ash with a weight ratio of 1:1; the sintering parameters were 1070°C for 15 min. The NH4 + -N and P adsorption capabilities were improved by utilizing 1 mol L-1 NaOH and 1.6 mol L-1 La(NO3 )3 ·6H2 O for modification. When the pH and duration were 7 and 1440 min, respectively, the maximum bending capacity of ammonia nitrogen and phosphorus was 3.2 and 2.1 mg g-1 at 308 K. The pseudo-second-order kinetic model better describes the adsorption dynamics of NH4 + -N and P, whereas the Langmuir model better describes the adsorption isotherm models of NH4 + -N and P. The adsorption mechanism of SBC-NaOH on NH4 + -N is ion exchange between Na+ and NH4 + , whereas the adsorption mechanism of SBC-La on phosphorus is ion exchange and La3+ adsorption. SBC combines efficient wastewater purification with the reuse of solid waste. The findings gave rise to the possibility of recycling ceramics as a plant fertilizer with a delayed release in the future. PRACTITIONER POINTS: New ceramsite was made from sludge and biomass ash. NH4 + -N (3.2 mg g-1 ) and P (2.1 mg g-1 ) were effectively adsorbed by ceramsite. The mechanism of NH4 + -N and P adsorption by ceramsite was studied. Absorbed ceramsite can be used as slow-release fertilizer in plant cultivation.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Fósforo , Nitrógeno , Adsorción , Biomasa , Fertilizantes , Hidróxido de Sodio , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA