RESUMEN
Heavy metal pollution (HMP) directly affects the safety of agricultural products, thereby impacting human health. Industrial emissions, as the main source of soil HMP in China, require in-depth research on their pollution risks. Based on national heavy metal (HM) enterprise data, this paper analyzes the spatial distribution characteristics of key enterprises involved in the HMP across the country. It constructs the risk assessment index system of enterprise HMP based on the "source-pathway-receptor" (SPR) process of the HMP, evaluates and partitions the risk of the HMP from enterprises nationwide. The results show that: (1) Enterprises and pollutant discharge outlets are mainly distributed in the eastern and southeastern coastal regions. Jiangxi, Yunnan, Guangdong, and Hunan Province are the main distribution regions of smelting enterprises, with the most types of HM pollutants. The hazard of pollution sources shows a spatial distribution pattern of higher risk in the southwest and north, and lower risk in the central region. Counties with high-risk pollution sources are mainly distributed in Yunnan, Hunan, Guangdong, Inner Mongolia, and Jiangxi Province. (2) The hazard of pollutant transmission pathways shows a spatial distribution pattern of higher risk in the southeast and lower risk in the central region. About 31.5 % of counties are at extremely high risk, mainly distributed in the southeastern coastal regions of Guangdong, Jiangsu, Zhejiang, Jiangxi, Shandong, and Fujian Province. (3) The vulnerability of the receptors shows significant clustering characteristics in the northeast and central regions. About 3.3 % of counties have a receptor vulnerability level of "extremely high," mainly distributed in Inner Mongolia, Jilin, Heilongjiang, Liaoning Province in the northeast, as well as Hubei and Jiangsu Province. (4) About 1.55 % of counties nationwide have a comprehensive risk level of the HMP classified as "extremely high," mainly distributed in Guangdong Province and Inner Mongolia. Additionally, some counties in Yunnan, Hunan, Jiangsu, Jiangxi, and Zhejiang Province have a risk of exceeding pollution standards, requiring further preventive measures to reduce pollution risks in the future. This paper can provide a scientific basis for the prevention and control (P&C) of the HMP in China.
RESUMEN
BACKGROUND: Our study aims to examine stress-strain data of the four major knee ligaments-the anterior cruciate ligament (ACL), the posterior cruciate ligament (PCL), the medial collateral ligament (MCL), and the lateral collateral ligament (LCL)-under transient impacts in various knee joint regions and directions within the static standing position of the human body. Subsequently, we will analyze the varying biomechanical properties of knee ligaments under distinct loading conditions. METHODS: A 3D simulation model of the human knee joint including bone, meniscus, articular cartilage, ligaments, and other tissues, was reconstructed from MRI images. A vertical load of 300 N was applied to the femur model's top surface to mimic the static standing position, and a 134 N load was applied to the impacted area of the knee joint. Nine scenarios were created to examine the effects of anterior, posterior, and lateral external forces on the upper, middle, and lower regions of the knee joint. RESULTS: The PCL exhibited the highest stress levels among the four ligaments when anterior loads were applied to the upper, middle, and lower parts of the knee, with maximum stresses at the PCL-fibula junction measuring 59.895 MPa, 27.481 MPa, and 28.607 MPa, respectively. Highest stresses on the PCL were observed under posterior loads on the upper, middle, and lower knee areas, with peak stresses of 57.421 MPa, 38.147 MPa, and 26.904 MPa, focusing notably on the PCL-tibia junction. When a lateral load was placed on the upper knee joint, the ACL showed the highest stress 32.102 MPa. Likewise, in a lateral impact on the middle knee joint, the ACL also had the highest stress of 29.544 MPa, with peak force at the ACL-tibia junction each time. In a lateral impact on the lower knee area, the LCL had the highest stress of 22.279 MPa, with the highest force at the LCL-fibula junction. Furthermore, the maximum stress data table indicates that stresses in the ligaments are typically higher when the upper portion of the knee is affected compared to when the middle and lower parts are impacted. CONCLUSIONS: This study recommends people avoid impacting the upper knee and use the middle and lower parts of the knee effectively against external forces to minimize ligament damage and safeguard the knee.
Asunto(s)
Análisis de Elementos Finitos , Articulación de la Rodilla , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/fisiopatología , Estrés Mecánico , Posición de Pie , Ligamentos Articulares/diagnóstico por imagen , Ligamentos Articulares/fisiopatología , Ligamentos Articulares/lesiones , Masculino , Ligamento Cruzado Posterior/lesiones , Ligamento Cruzado Posterior/diagnóstico por imagen , Ligamento Cruzado Posterior/fisiología , Ligamento Cruzado Posterior/fisiopatología , Traumatismos de la Rodilla/fisiopatología , Traumatismos de la Rodilla/diagnóstico por imagen , Soporte de Peso/fisiología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodosRESUMEN
Freeze-thaw (F-T) cycling poses a significant challenge in seasonally frozen zones, notably affecting the mechanical properties of soil, which is a critical consideration in subgrade engineering. Consequently, a series of unconfined compressive strength tests were conducted to evaluate the influence of various factors, including fiber content, fiber length, curing time, and F-T cycles on the unconfined compression strength (UCS) of fiber-reinforced cemented silty sand. In parallel, acoustic emission (AE) testing was conducted to assess the AE characteristic parameters (e.g., cumulative ring count, cumulative energy, energy, amplitude, RA, and AF) of the same material under F-T cycles, elucidating the progression of F-T-induced damage. The findings indicated that UCS initially increased and then declined as fiber content increased, with the optimal fiber content identified at 0.2%. UCS increased with prolonged curing time, while increases in fiber length and F-T cycles led to a reduction in UCS, which then stabilized after 6 to 10 cycles. Stable F-T cycles resulted in a strength loss of approximately 30% in fiber-reinforced cemented silty sand. Furthermore, AE characteristic parameters strongly correlated with the stages of damage. F-T damage was segmented into three stages using cumulative ring count and cumulative energy. An increase in cumulative ring count to 0.02 × 104 times and cumulative energy to 0.03 × 104 mv·µs marked the emergence of critical failure points. A sudden shift in AE amplitude indicated a transition in the damage stage, with an amplitude of 67 dB after 6 F-T cycles serving as an early warning of impending failure.
RESUMEN
The powdery mildew caused by Eeysiphe heraclei is a serious concern in Heracleum moellendorffii Hance. Therefore, exploring the mechanisms underlying sugar efflux from host cells to the fungus during the plant-fungus interaction showed great significance. The study successfully cloned HmSWEET8 and HmSTP1 genes based on RNA-seq technology. The complementation assays in yeast EBY.VW4000 found HmSWEET8 and HmSTP1 transporting hexose. Over-expressing or silencing HmSWEET8 in H. moellendorffii leaves increased or decreased powdery mildew susceptibility by changing glucose concentration in infective sites. Meanwhile, over-expressing HmSTP1 in H. moellendorffii leaves also increased powdery mildew susceptibility by elevating the glucose content of infective areas. Additionally, HmSTP1 expression was up-regulated obviously in HmSWEET8 over-expressed plants and inhibited significantly in HmSWEET8 silenced plants. Co-expressing HmSWEET8 and HmSTP1 genes significantly increased powdery mildew susceptibility compared with over-expressed HmSWEET8 or HmSTP1 plants alone. The results demonstrated that HmSTP1 may assist with HmSWEET8 to promote E. heraclei infection. Consequently, the infection caused by E. heraclei resulted in the activation of HmSWEET8, leading to an increased transfer of glucose to the apoplasmic spaces at the sites of infection, then, HmSTP1 facilitated the transport of glucose into host cells, promoting powdery mildew infection.
RESUMEN
BACKGROUND: Powdery mildew, caused by Eeysiphe heraclei, seriously threatens Heracleum moellendorffii Hance. Plant secondary metabolites are essential to many activities and are necessary for defense against biotic stress. In order to clarify the functions of these metabolites in response to the pathogen, our work concentrated on the variations in the accumulation of secondary metabolites in H. moellendorffii during E. heraclei infection. RESULTS: Following E. heraclei infection, a significant upregulation of coumarin metabolites-particularly simple coumarins and associated genes was detected by RNA-seq and UPLC-MS/MS association analysis. Identifying HmF6'H1, a Feruloyl CoA 6'-hydroxylase pivotal in the biosynthesis of the coumarin basic skeleton through ortho-hydroxylation, was a significant outcome. The cytoplasmic HmF6'H1 protein was shown to be able to catalyze the ortho-hydroxylation of p-coumaroyl-CoA and caffeoyl-CoA, resulting in the formation of umbelliferone and esculetin, respectively. Over-expression of the HmF6'H1 gene resulted in increased levels of simple coumarins, inhibiting the biosynthesis of furanocoumarins and pyranocoumarins by suppressing PT gene expression, enhancing H. moellendorffii resistance to powdery mildew. CONCLUSIONS: These results established HmF6'H1 as a resistance gene aiding H. moellendorffii in combatting E. heraclei infection, offering additional evidence of feruloyl-CoA 6'-hydroxylase role in catalyzing various types of simple coumarins. Therefore, this work contributes to our understanding of the function of simple coumarins in plants' defense against powdery mildew infection.
Asunto(s)
Ascomicetos , Cumarinas , Metaboloma , Enfermedades de las Plantas , Transcriptoma , Apiaceae/genética , Apiaceae/metabolismo , Apiaceae/microbiología , Ascomicetos/fisiología , Cumarinas/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Heracleum/genética , Heracleum/metabolismo , Heracleum/microbiologíaRESUMEN
Concrete is a versatile material widely used in modern construction. However, concrete is also subject to freeze-thaw damage, which can significantly reduce its mechanical properties and lead to premature failure. Therefore, the objective of this study was to assess the laboratory performance and freeze-thaw damage characteristics of a common mix proportion of concrete based on compressive mechanical tests and acoustic technologies. Freeze-thaw damage characteristics of the concrete were evaluated via compressive mechanical testing, mass loss analysis, and ultrasonic pulse velocity testing. Acoustic emission (AE) technology was utilized to assess the damage development status of the concrete. The outcomes indicated that the relationships between cumulative mass loss, compressive strength, and ultrasonic wave velocity and freeze-thaw cycles during the freezing-thawing process follow a parabola fitting pattern. As the freeze-thaw damage degree increased, the surface presented a trend of "smooth intact surface" to "surface with dense pores" to "cement mortar peeling" to "coarse aggregates exposed on a large area". Therefore, there was a rapid decrease in the mass loss after a certain number of freeze-thaw cycles. According to the three stages divided by the stress-AE parameter curve, the linear growth stage shortens, the damage accumulation stage increases, and the failure stage appears earlier with the increase in freeze-thaw cycles. In conclusion, the application of a comprehensive understanding of freeze-thaw damage characteristics of concrete based on compressive properties and acoustic parameters would enhance the evaluation of the performance degradation and damage status for concrete structures.
RESUMEN
The therapeutic effect of apigenin (APG) on hyperlipidemia was investigated using network pharmacology combined with molecular docking strategy, and the potential targets of APG in the treatment of hyperlipidemia were explored. Genetic Ontology Biological Process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of common targets were performed. Then, molecular docking was used to predict the binding mode of APG to the target. Finally, Sprague Dawley rats were used to establish a hyperlipidemia model. The expression levels of insulin (INS) and vascular endothelial growth factorâ A (VEGFA) mRNA in each group were detected by quantitative reverse transcription-polymerase chain reaction. Network pharmacological studies revealed that the role of APG in the treatment of hyperlipidemia was through the regulation of INS, VEGFA, tumor necrosis factor, epidermal growth factor receptor, matrix metalloprotein 9, and other targets, as well as through the regulation of the hypoxia-inducible factorâ 1 (HIF-1) signaling pathway, fluid shear stress, and atherosclerosis signaling pathways, vascular permeability; APG also participated in the regulation of glucose metabolism and lipid metabolism, and acted on vascular endothelial cells, and regulated vascular tone. Molecular docking showed that APG binds to the target with good efficiency. Experiments showed that after APG treatment, the expression levels of INS and VEGFA mRNA in the model group were significantly decreased (p<0.01). In conclusion, APG has multiple targets and affects pathways involved in the treatment of hyperlipidemia by regulating the HIF-1 signaling pathway, fluid shear stress, and the atherosclerosis pathway.
Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Hiperlipidemias , Ratas , Animales , Ratas Sprague-Dawley , Apigenina , Factor A de Crecimiento Endotelial Vascular , Células Endoteliales , Simulación del Acoplamiento Molecular , Farmacología en Red , InsulinaRESUMEN
BACKGROUND: When administered transdermally, desonide is ineffective due to its poor solubility. As a new transdermal delivery system, nanoemulsion gel has demonstrated significant advantages for drug delivery over conventional formulations. We have established desonide nanoemulsion gel (DES NE gel) for better transdermal absorption, but its efficacy and safety still need to be evaluated. This study aims to provide additional evidence demonstrating the improved pharmacodynamics and safety of transdermal delivery of Desonide via nanoemulsion gel. METHODS: Pharmacodynamics and safety of Desonide nanoemulsion gel were evaluated using Desonate ® as the reference formulation. To assess the difference in curative effect between DES NE gel and Desonate® and to ensure safety, atopic dermatitis (AD) models in KM mice were developed using 2,4-dinitrofluorobenzene (DNFB). The degree of ear swelling, ear mass difference, thymus, spleen index, and HE conventional pathology of mice were used as pharmacodynamic evaluation indexes, and the irritation was predicted by the New Zealand rabbit epidermal stimulation assay. RESULTS: Nanoemulsion gels may facilitate transdermal penetration of drugs by influencing the skin condition. Medium and high doses of DES NE gel significantly ameliorated the inflammation and swelling of the ear caused by dermatitis/eczema in mice. In addition, compared with DES gel, skin irritation extent did not increase. CONCLUSION: Nanoemulsion gel can be applied to improve the efficacy of drugs with low potency or poor solubility. DES NE gel provides a higher transdermal potential than other delivery systems. In this study, it was found that nanoemulsion gel is a promising percutaneous carrier of DES. DES NE-GEL has a significant curative effect on dermatitis/eczema in a mouse model and is expected to provide a new, efficient, and low toxic preparation for clinical treatment of dermatitis/eczema through the percutaneous system.
Asunto(s)
Eccema , Absorción Cutánea , Ratones , Animales , Conejos , Piel/metabolismo , Desonida/metabolismo , Desonida/farmacología , Administración Cutánea , Eccema/metabolismo , Emulsiones , Geles/farmacologíaRESUMEN
The formation of solid electrolyte interphase (SEI) and lithium ion intercalation are two crucial processes in lithium ion batteries. Given the complexity and challenges involved in investigating real batteries, a combination of model batteries comprising well-defined ultrathin graphite electrodes with surface-sensitive techniques can provide valuable information on these processes. Here, a comparative study of the performance of batteries using regular- and high-concentration electrolytes (RCE and HCE) is presented, aided by a myriad of correlative surface science techniques. It is found that the SEI formed in HCE possesses a thinner organic layer and more inorganic substances. Such an effective SEI protects the graphite electrode and facilitates the processes of Li+ intercalation/deintercalation, thereby improving the reversibility and cycling stability of the battery, superior to those with RCE. Moreover, the battery performance can be readily tuned by switching the electrolytes. The good cycling stability of the battery can still be maintained in RCE after the preformation of a robust SEI on the ultrathin graphite electrode in HCE. This work highlights the importance of electrolyte-modulated SEI formation to battery performance and provides powerful platforms to comprehensively study the SEI formation and ion intercalation processes.
RESUMEN
BACKGROUND: Hierarchical diagnosis and treatment has been gradually implemented throughout the China. Primary physicians are the main force in primary-level medical and health services, which means that standardized training of primary-level doctors is indispensable. OBJECTIVES: Evaluation of the effect of primary physician training on standardized management of diabetes, and comparison of the effects of different training models. METHOD: The study selected 24 community health service centers from 4 cities in Liaoning Province, and consisted of two groups: primary physicians (n = 2083) who received training; and patients with diabetes (n = 585) in community health service centers. Short-term training effects on primary physicians were assessed through diabetes knowledge tests at baseline and at the end of training; the long-term effects of training on patients with diabetes were assessed by questionnaires at baseline and 1 year after training. The differences in training effects between different training models were compared. Complication screening results were also assessed. RESULTS: After training, the primary physicians' knowledge of diabetes diagnosis and treatment improved (p < 0.05). The complication screening rate of local diabetes patients increased from 22.2% before training to 27.7% 1 year after training (p = 0.033). There were significant differences in the training effect between different training models (p = 0.038). The short-term intensive training group demonstrated the greatest training effect, primary physicians under this training model are more likely to conduct standardized screenings for patients (OR = 1.806, 95%CI 1.008-3.233), and the complication screening rate was the highest (37.6%). CONCLUSION: This study shows that training of primary physicians is an effective way to improve the standardized management of diabetes, by improving the ability of primary physicians to manage diabetes in a standardized manner, so that patients in primary hospitals receive more comprehensive diagnosis and treatment services. Compared with scattered training throughout the year, short-term intensive training was found to be more effective.
Asunto(s)
Diabetes Mellitus , Médicos , Servicios de Salud Comunitaria , Diabetes Mellitus/diagnóstico , Educación Médica Continua , Humanos , Encuestas y CuestionariosRESUMEN
WHAT IS KNOWN AND OBJECTIVES: Ademetionine 1,4-Butanedisulfonate (SAMe) enteric-coated tablets are widely used for treatment of pre-cirrhotic and cirrhotic intrahepatic cholestasis, as well as intrahepatic cholestasis of pregnancy (ICP), but incomplete clinical data and interference from endogenous substances pose numerous challenges for clinical trial of ademetionine. The objective of this study was to evaluate the pharmacokinetic profile of SAMe enteric-coated tablets and to assess its food impact and safety in healthy Chinese subjects. METHODS: A randomized, open-label, single-dose study was carried out to determine the pharmacokinetics of SAMe enteric-coated tablets administered in both fasted and postprandial conditions. Baseline collection and data adjustment were required to reduce the effect of endogenous substances. Relevant pharmacokinetic data from subjects administered the reference formulation will be disclosed and utilized in this thesis. RESULTS: Twenty-four subjects with a body mass index (BMI) of 19-24 kg/m2 were enrolled in the study and all completed the trial. The impact of food on the drug was noticeable, with faster absorption in the fasting group (Tmax , 4.50 ± 1.07 and 7.50 ± 1.58 for the fasting and postprandial groups, respectively) but higher exposure in the postprandial group (AUC0-inf , 4021.02 ± 3377.13 and 5087.28 ± 3539.26 for the fasting and postprandial groups, respectively). No serious adverse effects were observed in the fasted and postprandial conditions. WHAT IS NEW AND CONCLUSIONS: The pharmacokinetic profile of SAMe enteric-coated tablets in healthy Chinese subjects was partially complemented in this study. SAMe enteric-coated tablets showed promising safety in fasted and postprandial conditions. However, the impact of food on the drug was significant and might access to the absorption site and affect biochemical reactions.
Asunto(s)
Ayuno , S-Adenosilmetionina , Administración Oral , Área Bajo la Curva , Disponibilidad Biológica , China , Estudios Cruzados , Voluntarios Sanos , Humanos , Cirrosis Hepática , Comprimidos , Comprimidos Recubiertos , Equivalencia TerapéuticaRESUMEN
Background: Chronic heart failure (CHF) is a major public health problem with high mortality and morbidity worldwide. Shexiang Tongxin Dropping Pill (STDP) is a widely used traditional Chinese medicine preparation for coronary heart disease and growing evidence proves that STDP exerts beneficial effects on CHF in the clinic. However, the molecular mechanism of the therapeutic effects of STDP on CHF remains largely unknown. Objective: This study aimed to elucidate the mechanism of action of STDP against CHF by integrating network pharmacology analysis and whole-transcriptome sequencing. Methods: First, the mouse model of CHF was established by the transverse aortic constriction (TAC) surgery, and the efficacy of STDP against CHF was evaluated by assessing the alterations in cardiac function, myocardial fibrosis, and cardiomyocyte hypertrophy with echocardiography, Masson's trichrome staining, and wheat germ agglutinin staining. Next, a CHF disease network was constructed by integrating cardiovascular disease-related genes and the transcriptome sequencing data, which was used to explore the underlying mechanism of action of STDP. Then, the key targets involved in the effects of STDP on CHF were determined by network analysis algorithms, and pathway enrichment analysis was performed to these key genes. Finally, important targets in critical pathway were verified in vivo. Results: STDP administration obviously improved cardiac function, relieved cardiomyocyte hypertrophy, and ameliorated myocardial fibrosis in CHF mice. Moreover, STDP significantly reversed the imbalanced genes that belong to the disease network of CHF in mice with TAC, and the number of genes with the reverse effect was 395. Pathway analysis of the crucial genes with recovery efficiency revealed that pathways related to fibrosis and energy metabolism were highly enriched, while TGF-ß pathway and ERK/MAPK pathway were predicted to be significantly affected. Consistently, validation experiments confirmed that inhibiting ERK/MAPK and TGF-ß signaling pathways via reduction of the phosphorylation level of Smad3 and ERK1/2 is the important mechanism of STDP against CHF. Conclusion: Our data demonstrated that STDP can recover the imbalanced CHF network disturbed by the modeling of TAC through the multi-target and multi-pathway manner in mice, and the mechanisms are mainly related to inhibition of ERK/MAPK and TGF-ß signaling pathways.
RESUMEN
In this paper, a basalt fiber surface was treated with coupling agent KH-550 and hydrochloric acid, and the basalt fiber polymer-modified active powder concrete (RPC) material was prepared. There are significant differences in material composition and properties between basalt fiber polymer-modified RPC and ordinary concrete, and the structural design calculation (cracking moment and normal section bending bearing capacity) of an ordinary reinforced concrete beam is no longer applicable. Thus, mechanical parameters such as displacement and strain of reinforcement basalt fiber polymer-modified RPC beams subjected to four-point bending were tested. The excellent compressive and tensile strengths of basalt fiber polymer-modified RPC were fully utilized. The tensile strength of basalt fiber polymer-modified RPC in the tensile zone of the beam was considered in the calculation of normal section bending bearing capacity of reinforcement basalt fiber polymer-modified RPC beams. The results showed that the measured values of the cracking moment and ultimate failure bending moment of reinforcement basalt fiber polymer-modified RPC beams were in good agreement with the calculated values. The established formulas for cracking moment and normal section bending bearing capacity can provide references for the design of reinforcement basalt fiber polymer-modified RPC simply supported beam and promote the wide application of basalt fiber polymer-modified RPC materials in practical engineering.
RESUMEN
Aralia elata (Miq.) Seem is widely used as a medicinal plant and functional food in China. In this study, A. elata plants were exposed to full sunlight (CK), 40% shading (LS), 60% shading (MS), and >80% shading (ES) condition to investigate the effects of shading treatments on growth, stress levels, antioxidant enzymes activity, araloside content and related gene expression. The greatest growth and leaf biomass were achieved in 40% shading, and leaf biomass per plant increased by 16.09% compared to the non-shading treatment. Furthermore, the lowest reactive oxide species (ROS) production and lipid peroxidation resulting from increasing antioxidant enzyme activity were also observed in LS treatment. Overall, shading percentage negatively regulated the expression of key enzymes (squalene synthase, SS; squalene epoxidase, SE and ß-amyrin synthase, bAS) involved in the saponin biosynthesis, resulting in the greatest yields of total and four selected aralosides in A. elata leaves were achieved in sunlight group. However, the greatest yield of total saponin in the leaves was observed in the 40% shading group due to higher leaf biomass. The results suggest that optimizing the field growing conditions would be important for obtaining the greatest yield of bioactive components. Total saponin and selected aralosides also have a significant correlation with ROS production and antioxidant enzyme activity, these indicated the increased yield of these saponins may be part of a defense response. The study concludes that the production of saponin was the interaction of oxidative stress and photosynthesis.
Asunto(s)
Aralia , Oscuridad , Hojas de la Planta/efectos de la radiación , Saponinas/metabolismo , Triterpenos/metabolismo , Aralia/genética , Aralia/efectos de la radiación , Regulación de la Expresión Génica de las PlantasRESUMEN
The urban environment is facing serious problems caused by automobile exhaust pollution, which has led to a great impact on human health and climate, and aroused widespread concern of the government and the public. Nano titanium dioxide (TiO2), as a photocatalyst, can be activated by ultraviolet irradiation and then form a strong REDOX potential on the surface of the nano TiO2 particles. The REDOX potential can degrade the automobile exhaust, such as nitrogen oxides (NOx) and hydrocarbons (HC). In this paper, a photocatalytic environmentally friendly pervious concrete (PEFPC) was manufactured by spraying nano TiO2 on the surface of it and the photocatalytic performance of PEFPC was researched. The nano TiO2 particle size, TiO2 dosage, TiO2 spraying amount, and dispersant dosage were selected as factors to investigate the efficiency of photocatalytic degradation of automobile exhaust by PEFPC. Moreover, the environmental scanning electron microscope (ESEM) was used to evaluate the distribution of nano TiO2 on the surface of the pervious concrete, the distribution area of nano TiO2 was obtained through Image-Pro Plus, and the area ratio of nano TiO2 to the surface of the pervious concrete was calculated. The results showed that the recommended nano TiO2 particle size is 25 nm. The optimum TiO2 dosage was 10% and the optimum dispersant dosage was 5.0%. The photocatalytic performance of PEFPC was best when the TiO2 spraying amount was 333.3 g/m2. The change in the photocatalytic ratio of HC and NOx is consistent with the distribution area of nano TiO2 on the surface of the pervious concrete. In addition, the photocatalytic performance of PEFPC under two light sources (ultraviolet light and sunlight) was compared. The results indicated that both light sources were able to stimulate the photocatalytic performance of PEFPC. The research provided a reference for the evaluation of automobile exhaust removal performance of PEFPC.
RESUMEN
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Panax notoginseng/química , Panax/química , Fitoquímicos/uso terapéutico , Animales , Medicamentos Herbarios Chinos/aislamiento & purificación , Humanos , Fitoquímicos/aislamiento & purificaciónRESUMEN
Acoustic emission (AE), as a nondestructive testing (NDT) and real-time monitoring technique, could characterize the damage evolution and fracture behavior of materials. The primary objective of this paper was to investigate the improvement mechanism of steel slag on the low-temperature fracture behavior of permeable asphalt mixtures (PAM). Firstly, steel slag coarse aggregates were used to replace basalt coarse aggregates with equal volume at different levels (0%, 25%, 50%, 75%, and 100%). Then, the low-temperature splitting test with slow loading was used to obtain steady crack growth, and the crack initiation and propagation of specimens were monitored by AE technique in real time. From the low-temperature splitting test results, SS-100 (permeable asphalt mixtures with 100% steel slag) has the optimal low-temperature cracking resistance. Therefore, the difference of fracture behavior between the control group (permeable asphalt mixtures without steel slag) and SS-100 was mainly discussed. From the AE test results, a slight bottom-up trend of sentinel function was founded in the 0.6-0.9 displacement level for SS-100, which is different from the control group. Furthermore, the fracture stages of the control group and SS-100 could be divided based on cumulative RA and cumulative AF curves. The incorporation of 100% steel slag reduced the shear events and restrained the growth of shear cracking of the specimen in the macro-crack stage. Finally, the considerable drops of three kinds of b-values in the final phase were found in the control group, but significant repeated fluctuations in SS-100. In short, the fracture behavior of PAM under low temperature was significantly improved after adding 100% steel slag.
RESUMEN
Basalt fiber (BF) is a new anti-corrosion and environmentally friendly material, which is expected to delay the corrosion process of steel bars and improve the durability of reinforced reactive powder concrete (RPC). The electrochemical method is a nondestructive testing and real-time monitoring technique used to characterize the corrosion behaviors of steel bars embedded in concrete structures. In this paper, the electrochemical technique was employed to evaluate the corrosion of steel bars embedded in basalt fiber modified reactive powder concrete (BFRPC). Besides, crack and steel-concrete interface damage (SCID) were considered as typical factors that affect steel corrosion in concrete. Thus, both reinforced fiber-free RPC and BFRPC specimens with crack and SCID were prepared for evaluating the steel corrosion behaviors by electrochemical methods. The results revealed that both crack and SCID would aggravate the steel corrosion, and the crack was the major factor that affects the corrosion process. Moreover, the excellent compactness of BFRPC and the bridging action of BF could effectively prevent the concrete cracking and steel corrosion process of concrete. Using reinforced BFRPC instead of ordinary concrete in practical projects could greatly extend the service life of steel bars.
RESUMEN
Basalt fiber and crumb rubber, as excellent road material modifiers, have great advantages in improving the mechanical properties and fracture behavior of concrete. Acoustic emission (AE) is a nondestructive testing and real-time monitoring technique used to characterize the fracture behavior of concrete specimens. The object of this paper is to investigate the effects of crumb rubber replacement rate, basalt fiber content and water-binder ratio on the mechanical properties and fracture behavior of crumb rubber basalt fiber concrete (CRBFC) based on orthogonal test. The fracture behavior of a CRBFC specimen under three-point flexural conditions was monitored by AE technology and the relative cumulative hit (RCH) was defined to characterize the internal damage degree of CRBFC. The experimental results showed that, considering the mechanical strength and fracture damage behavior of CRBFC, the optimal crumb rubber replacement rate, basalt fiber content and water-binder ratio are 10%, 2 kg/m3 and 0.46, respectively. In addition, it was found that AE parameters can effectively characterize the fracture behavior of CRBFC. The fracture stages of CRBFC can be divided according to the cumulative AE hits and counts. AE amplitude value can be used as an early warning of CRBFC specimen fracture. Moreover, the fracture mode can be identified by RA and average frequency (AF) values variation during the loading process.
RESUMEN
BACKGROUND: Members of the cytochrome P450 (CYP450) and UDP-glycosyltransferase (UGT) gene superfamily have been shown to play essential roles in regulating secondary metabolite biosynthesis. However, the systematic identification of CYP450s and UGTs has not been reported in Aralia elata (Miq.) Seem, a highly valued medicinal plant. RESULTS: In the present study, we conducted the RNA-sequencing (RNA-seq) analysis of the leaves, stems, and roots of A. elata, yielding 66,713 total unigenes. Following annotation and KEGG pathway analysis, we were able to identify 64 unigenes related to triterpenoid skeleton biosynthesis, 254 CYP450s and 122 UGTs, respectively. A total of 150 CYP450s and 92 UGTs encoding > 300 amino acid proteins were utilized for phylogenetic and tissue-specific expression analyses. This allowed us to cluster 150 CYP450s into 9 clans and 40 families, and then these CYP450 proteins were further grouped into two primary branches: A-type (53%) and non-A-type (47%). A phylogenetic analysis of 92 UGTs and other plant UGTs led to clustering into 16 groups (A-P). We further assessed the expression patterns of these CYP450 and UGT genes across A. elata tissues, with 23 CYP450 and 16 UGT members being selected for qRT-PCR validation, respectively. From these data, we identified CYP716A295 and CYP716A296 as the candidate genes most likely to be associated with oleanolic acid synthesis, while CYP72A763 and CYP72A776 were identified as being the most likely to play roles in hederagenin biosynthesis. We also selected five unigenes as the best candidates for oleanolic acid 3-O-glucosyltransferase. Finally, we assessed the subcellular localization of three CYP450 proteins within Arabidopsis protoplasts, highlighting the fact that they localize to the endoplasmic reticulum. CONCLUSIONS: This study presents a systematic analysis of the CYP450 and UGT gene family in A. elata and provides a foundation for further functional characterization of these two multigene families.