Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39289182

RESUMEN

PURPOSE: The stimulator of interferon genes (STING) is a critical component of the innate immune system and plays a pivotal role in tumor immunotherapy. Developing non-invasive in vivo diagnostic methods for visualizing STING is highly valuable for STING-related immunotherapy. This work aimed to build a noninvasive imaging platform that can dynamically and quantitatively monitor tumor STING expression. METHODS: We investigated the in vivo positron emission tomography (PET) imaging of STING-expressing tumors (B16F10, MC38, and Panc02) with STING-targeted radioprobe ([18F]F-CRI1). The expression of STING in tumors was quantified, and correlation analysis was performed between these results and the outcomes of PET imaging. Furthermore, we optimized the structure of [18F]F-CRIn with polyethylene glycol (PEG) to improve the pharmacokinetic characteristics in vivo. A comprehensive comparison of the imaging and biodistribution results obtained with the optimized probes was conducted in the B16F10 tumors. RESULTS: The PET imaging results showed that the uptake of [18F]F-CRI1 in tumors was positively correlated with the expression of STING in tumors (r = 0.9184, P < 0.001 at 0.5 h). The lipophilicity of the optimized probes was significantly reduced. As a result of employing optimized probes, B16F10 tumor-bearing mice exhibited significantly improved tumor visualization in PET imaging, along with a marked reduction in retention within non-target areas such as the gallbladder and intestines. Biodistribution experiments further validated the efficacy of probe optimization in reducing uptake in non-target areas. CONCLUSION: In summary, this work demonstrated a promising pathway for the development of STING-targeted radioprobes, advancing in vivo PET imaging capabilities.

2.
J Integr Med ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39256145

RESUMEN

OBJECTIVE: The objective of this study was to investigate the clinical efficacy and safety of treating sepsis patients with Xuebijing injection (XBJI). METHODS: We conducted a retrospective analysis of 418 patients who experienced severe infections and were treated with XBJI from June 2018 to June 2021. Propensity score matching was used to match the patient cases. The study population included 209 pairs of cases (418 individuals), and the analysis included data from before and after a 14-day course of treatment with carbapenem alone, or carbapenem with XBJI. RESULTS: There were no significant differences in the 14-day mortality or length of hospital stay (P > 0.05) between the two groups. The combined treatment group had more patients with C-reactive protein that returned to normal levels (compared to baseline) than the non-combined treatment group (14.4% vs 8.1%; odds ratio [OR]: 0.528; 95% confidence interval [CI]: 0.282-0.991; P = 0.026). Similarly, the combined treatment group had higher procalcitonin attainment rate (55.0% vs 39.7%; OR: 0.513; 95% CI: 0.346-0.759; P = 0.001) than the non-combined treatment group. Further, more patients in the combined treatment group achieved normal creatinine levels than in the non-combined treatment group (64.1% vs 54.1%; OR: 0.659; 95% CI: 0.445-0.975; P = 0.037). CONCLUSION: The combination of XBJI with carbapenem did not reduce the 14-day mortality rate of patients with severe infection, but it was able to reduce the level of inflammatory factors in patients with sepsis, and had a protective effect on liver and kidney function. Please cite this article as: Gong ZT, Yang HX, Zhu BB, Liu HH, Siri GL. Clinical efficacy of Xuebijing injection for the treatment of sepsis: A retrospective cohort study. J Integr Med. 2024; Epub ahead of print.

3.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223509

RESUMEN

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Glucemia , Proteínas Portadoras , Diabetes Mellitus Experimental , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Animales , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas Portadoras/metabolismo , Glucemia/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Fosforilación , Función Ventricular Izquierda/efectos de los fármacos , Tiorredoxinas/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Proteómica , Ratas , Mapas de Interacción de Proteínas , Proteínas de Ciclo Celular
4.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39233376

RESUMEN

Repeated exposure to word forms and meanings improves lexical knowledge acquisition. However, the roles of domain-general and language-specific brain regions during this process remain unclear. To investigate this, we applied intermittent theta burst stimulation over the domain-general (group left dorsolateral prefrontal cortex) and domain-specific (Group L IFG) brain regions, with a control group receiving sham intermittent theta burst stimulation. Intermittent theta burst stimulation effects were subsequently assessed in functional magnetic resonance imaging using an artificial word learning task which consisted of 3 learning phases. A generalized psychophysiological interaction analysis explored the whole brain functional connectivity, while dynamic causal modeling estimated causal interactions in specific brain regions modulated by intermittent theta burst stimulation during repeated exposure. Compared to sham stimulation, active intermittent theta burst stimulation improved word learning performance and reduced activation of the left insula in learning phase 2. Active intermittent theta burst stimulation over the domain-general region increased whole-brain functional connectivity and modulated effective connectivity between brain regions during repeated exposure. This effect was not observed when active intermittent theta burst stimulation was applied to the language-specific region. These findings suggest that the domain-general region plays a crucial role in word formation rule learning, with intermittent theta burst stimulation enhancing whole-brain connectivity and facilitating efficient information exchange between key brain regions during new word learning.


Asunto(s)
Encéfalo , Lenguaje , Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Adulto Joven , Estimulación Magnética Transcraneal/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Cognición/fisiología , Mapeo Encefálico , Aprendizaje/fisiología , Ritmo Teta/fisiología , Aprendizaje Verbal/fisiología , Vías Nerviosas/fisiología
5.
Int J Biol Sci ; 20(10): 3956-3971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113702

RESUMEN

Platelet extracellular vesicles (PEVs) play an important role in tumor development. However, the mechanisms underlying their biogenesis have not been fully elucidated. Protein kinase Cα (PKCα) is an important regulator of platelet activation, but the effect of PKCα on EV generation is unclear. We used small-particle flow cytometry and found that the number of PEVs was increased in patients with breast cancer compared to those with benign breast disease. This was accompanied by increased levels of activated PKCα in breast cancer platelets. Treating platelets with the PKCα agonist phorbol 12-myristate 13-acetate (PMA) increased the phosphorylation PKCα and induced PEV production, while the PKCα inhibitor GÖ6976 showed the opposite effects. Notably, incubating platelets from patients with benign tumors with the culture supernatant of MDA-MB-231 cells induced PKCα phosphorylation in the platelets. Mass spectrometry and coimmunoprecipitation assays showed that Dynamin 2 (DNM2), a member of the guanosine-triphosphate-binding protein family, might cooperate with activated PKCα to regulate PEV production by breast cancer platelets. Similar results were observed in a mouse model of lung metastasis. In addition, PEVs were engulfed by breast cancer cells and promoted cancer cell migration and invasion via miR-1297 delivery. These findings suggested that PKCα cooperates with DNM2 to induce PEV generation, and PEV release might triggered by factors in the breast cancer environment.


Asunto(s)
Plaquetas , Neoplasias de la Mama , Vesículas Extracelulares , Proteína Quinasa C-alfa , Proteína Quinasa C-alfa/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Humanos , Plaquetas/metabolismo , Femenino , Animales , Ratones , Línea Celular Tumoral , Activación Plaquetaria , Metástasis de la Neoplasia , Fosforilación , Movimiento Celular , Acetato de Tetradecanoilforbol/farmacología
6.
bioRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39091806

RESUMEN

Objectives: Chondrocyte metabolic dysfunction plays an important role in osteoarthritis (OA) development during aging and obesity. Protein post-translational modifications (PTMs) have recently emerged as an important regulator of cellular metabolism. We aim to study one type of PTM, lysine malonylation (MaK) and its regulator Sirt5 in OA development. Methods: Human and mouse cartilage tissues were used to measure SIRT5 and MaK levels. Both systemic and cartilage-specific conditional knockout mouse models were subject to high-fat diet (HFD) treatment to induce obesity and OA. Proteomics analysis was performed in Sirt5 -/- and WT chondrocytes. SIRT5 mutation was identified in the Utah Population Database (UPDB). Results: We found that SIRT5 decreases while MAK increases in the cartilage during aging. A combination of Sirt5 deficiency and obesity exacerbates joint degeneration in a sex dependent manner in mice. We further delineate the malonylome in chondrocytes, pinpointing MaK's predominant impact on various metabolic pathways such as carbon metabolism and glycolysis. Lastly, we identified a rare coding mutation in SIRT5 that dominantly segregates in a family with OA. The mutation results in substitution of an evolutionally invariant phenylalanine (Phe-F) to leucine (Leu-L) (F101L) in the catalytic domain. The mutant protein results in higher MaK level and decreased expression of cartilage ECM genes and upregulation of inflammation associated genes. Conclusions: We found that Sirt5 mediated MaK is an important regulator of chondrocyte cellular metabolism and dysregulation of Sirt5-MaK could be an important mechanism underlying aging and obesity associated OA development.

7.
Front Immunol ; 15: 1428551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086479

RESUMEN

Background: Myocardial inflammation and apoptosis induced by cirrhosis are among the primary mechanisms of cirrhotic cardiomyopathy. CD73, a common extracellular nucleotidase also known as 5'-nucleotidase, is associated with the progression of inflammation and immunity in multiple organs. However, the mechanism by which CD73 contributes to myocardial inflammation and apoptosis in cirrhosis remains unclear. Methods: In this study, a cirrhotic cardiomyopathy model in mice was established by bile duct ligation. Myocardial-specific overexpression of CD73 was achieved by tail vein injection of AAV9 (adeno-associated virus)-cTNT-NT5E-mCherry, and cardiac function in mice was assessed using echocardiography. Myocardial inflammation infiltration and apoptosis were evaluated through pathological observation and ELISA assays. The expression of CD73, A2AR, apoptotic markers, and proteins related to the NF-κB pathway in myocardial tissue were measured. Results: In the myocardial tissue of the cirrhotic cardiomyopathy mouse model, the expression of CD73 and A2AR increased. Overexpression of CD73 in the myocardium via AAV9 injection and stimulation of A2AR with CGS 21680 inhibited myocardial inflammation and cardiomyocyte apoptosis induced by cirrhosis. Additionally, overexpression of CD73 suppressed the activation of the NF-κB pathway by upregulating the expression of the adenosine receptor A2A. Conclusion: Our study reveals that the CD73/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis through negative feedback regulation of the NF-κB pathway.


Asunto(s)
5'-Nucleotidasa , Cardiomiopatías , Cirrosis Hepática , Receptor de Adenosina A2A , Transducción de Señal , Animales , Masculino , Ratones , 5'-Nucleotidasa/metabolismo , Apoptosis , Cardiomiopatías/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/inmunología , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Proteínas Ligadas a GPI , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptor de Adenosina A2A/metabolismo
8.
J Prosthodont ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146035

RESUMEN

A digital workflow is presented for multiple transfers of targeted jaw relation and restorative spaces from interim to definitive restorations in patients with severe tooth wear. Following analysis of the targeted restorative space, segmented arch stereolithographic templates were digitally created and fabricated for precise control of reduction depth. Then, the jaw relation was transferred from the initially determined stabilization splint to the temporary fixed restoration and definitive restoration by using a digital articulator. This digital approach yielded a stabilized jaw relationship and restorative spaces transferring effect throughout successive stages of occlusal reconstruction resulting in satisfactory prosthetic outcomes.

9.
Angew Chem Int Ed Engl ; : e202412508, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213133

RESUMEN

The isolation and catalytic enantioselective synthesis of configurationally stable S-stereogenic sulfonium ylides has been a significant challenge in the field of asymmetric synthesis. These reactive intermediates are crucial for a variety of synthetic transformations, yet their inherent tendency towards rapid inversion at the sulfur stereocenter has hindered their practical utilization. Conventional approaches have focused on strategies that incorporate a C=S bond-containing cyclic framework to help mitigate this stereochemical lability. In this work, we present an alternative tactic that leverages the stabilizing influence of an adjacent N-atom and cyclic sulfide moiety. Exploiting a copper catalyzed enantioselective intermolecular carbene transfer reaction, structurally diverse S-stereogenic aminosulfonium ylides have been achieved in excellent yields and enantioselectivities. Experimental results indicate that the careful selection of 2-diazo-1,3-diketone precursors is crucial for achieving optimal stereoinduction in this transformation. The resulting highly enantioenriched aminosulfonium ylides allow for further stereospecific elaborations to furnish aminosulfonium ylide oxides and sulfinamide. This work expands the boundaries of chiral sulfonium ylide chemistry, providing access to a broad range of previously elusive S-stereogenic aminosulfonium ylide scaffolds.

10.
Microorganisms ; 12(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39203406

RESUMEN

Engineering acid-tolerant microbial strains is a cost-effective approach to overcoming acid stress during industrial fermentation. We previously constructed an acid-tolerant strain (Escherichia coli SC3124) with enhanced growth robustness and productivity under mildly acidic conditions by fine-tuning the expression of synthetic acid-tolerance module genes consisting of a proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and ROS scavengers (sodB, katE). However, the precise acid-tolerance mechanism of E. coli SC3124 remained unclear. In this study, the growth of E. coli SC3124 under mild acid stress (pH 6.0) was determined. The final OD600 of E. coli SC3124 at pH 6.0 was 131% and 124% of that of the parent E. coli MG1655 at pH 6.8 and pH 6.0, respectively. Transcriptome analysis revealed the significant upregulation of the genes involved in oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, and lysine-dependent acid-resistance system in E. coli SC3124 at pH 6.0. Subsequently, a weighted gene coexpression network analysis was performed to systematically determine the metabolic perturbations of E. coli SC3124 with mild acid treatment, and we extracted the gene modules highly associated with different acid traits. The results showed two biologically significant coexpression modules, and 263 hub genes were identified. Specifically, the genes involved in ATP-binding cassette (ABC) transporters, oxidative phosphorylation, the TCA cycle, amino acid metabolism, and purine metabolism were highly positively associated with mild acid stress responses. We propose that the overexpression of synthetic acid-tolerance genes leads to metabolic changes that confer mild acid stress resistance in E. coli. Integrated omics platforms provide valuable information for understanding the regulatory mechanisms of mild acid tolerance in E. coli and highlight the important roles of oxidative phosphorylation and ABC transporters in mild acid stress regulation. These findings offer novel insights to better the design of acid-tolerant chasses to synthesize value-added chemicals in a green and sustainable manner.

12.
Int J Biol Macromol ; 277(Pt 1): 134105, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39048002

RESUMEN

Extracted from Platycodon grandiflorum, platycodon grandiflorum polysaccharides (PGPs) with diverse biological functions have been extensively employed for modification and fabrication of hydrogels for biomedical applications, such as wound dressings. However, since the lack of effective structural design, the reported polysaccharide-based hydrogel dressings are still suffered from structural failures and limited bio-functionality. Herein, we demonstrate a facile and general strategy to fabricate a supramolecular hydrogel composed of PGP-based polymer brush as building blocks combined with a Ca2+-mediated self-assembly process. The specific polymer brush with high branch functionality was achieved with polyacrylamide arms evenly grown on the PGP (grafting efficiency as high as 80 %) with series of chemical modifications. With above structural merits, the resulting hydrogel with densely crosslinked polymer brush featured enhanced mechanical strength as well as self-healing, and shear-thinning behaviors. Further biocompatible investigation indicated the as-prepared hydrogels with admirable performances in self-adhesion (adhesive strength of 16.7-79.5 kPa), a pH-responsive swelling ratio as high as 44 at pH 5.4, and pH-responsive degradation. They also showed antioxidant capacity by scavenging DPPH activity of nearly 80 % in 20 min, hemocompatibility, cell viability and cell migration. Impressively, the PGP-based polymer brush hydrogel served as a wound dressing revealed significant acceleration on wound closure.


Asunto(s)
Vendajes , Hidrogeles , Polisacáridos , Hidrogeles/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Antioxidantes/química , Antioxidantes/farmacología , Concentración de Iones de Hidrógeno , Animales , Polímeros/química
13.
Small ; : e2404909, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39073024

RESUMEN

Modulating the electronic properties of transition metal sites in photocatalysts at the atomic level is essential for achieving high-activity carbon dioxide photoreduction (CO2PR). An electronic strategy is herein proposed to engineer In-d-band center of InVO4 by incorporating MnOx nanoparticles and oxygen vacancies (VO) into holey InVO4 nanobelts (MnOx/VO-InVO4), which synergistically modulates the In-d-band center to a moderate level and consequently leads to high-efficiency CO2PR. The MnOx/VO-InVO4 catalyst with optimized electronic property exhibits a single carbon evolution rate of up to 145.3 µmol g-1 h-1 and a carbon monoxide (CO) product selectivity of 92.6%, coming out in front of reported InVO4-based materials. It is discovered that the modulated electronic property favors the interaction between the In sites and their intermediates, which thereby improves the thermodynamics and kinetics of the CO2PR-to-CO reaction. This work not only demonstrates the effective engineering of the d orbital of the low-coordination In atoms to promote CO2PR, but also paves the way for the application of tuning d-band center to develop high-efficiency catalysts.

14.
Food Chem ; 459: 140452, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024871

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are commonly found in various environmental matrices and have received significant attention due to their toxic effects on ecosystems and environmental health. In this study, a specific magnetic composite material derived from MXene, known as phenyl-functionalized NiFe2O4@Ti3C2TX, was designed and synthesized using a simple method. This composite material was used to develop an effective magnetic solid-phase extraction (MSPE) method for enriching trace polycyclic aromatic hydrocarbons (PAHs) in tea and coffee samples. The eluted PAHs were analyzed via gas chromatography-tandem mass spectrometry. Under optimal conditions, this method exhibited excellent linear relationships for 16 PAHs within the ranges of 0.001-25 and 0.0005-25 µg/L, with correlation coefficients exceeding 0.9979. The limits of detection for the target PAHs ranged from 0.1 to 0.3 ng/L. The effectiveness of the proposed method was evaluated by analyzing tea and coffee samples, and the satisfactory spiked recoveries of PAHs ranged from 84.5% to 112.6%.


Asunto(s)
Café , Contaminación de Alimentos , Hidrocarburos Policíclicos Aromáticos , Extracción en Fase Sólida , , Té/química , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/química , Café/química , Extracción en Fase Sólida/métodos , Contaminación de Alimentos/análisis , Níquel/química , Níquel/análisis , Níquel/aislamiento & purificación , Compuestos Férricos/química , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección
15.
Small ; : e2402526, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958071

RESUMEN

The intricate processes that govern the interactions between peripatetic immune cells and distal renal injury in obesity are not fully understood. Employing transcriptomic analysis of circulating extracellular vesicles (EVs), a marked amplification of small RNA (miR-3960) is discerned within CD3-CD19+ B cells. This RNA is found to be preferentially augmented in kidney tissues, contrasting with its subdued expression in other organs. By synthesizing dual-luciferase reporter assay with co-immunoprecipitation analysis, it is pinpointed that miR-3960 specifically targets the nuclear gene TRMT5, a pivotal actor in the methylation of mitochondrial tRNA. This liaison instigates aberrations in the post-transcriptional modifications of mitochondrial tRNA, engendering deficiencies within the electron respiratory chain, primarily attributable to the diminution of the mitochondrial bioenergetic compound (NDUFA7) complex I. Such perturbations lead to a compromised mitochondrial respiratory capacity in renal tubular cells, thereby exacerbating tubular injury. In contrast, EV blockade or miR-3960 depletion markedly alleviates renal tubular injury in obesity. This investigation unveils a hitherto unexplored pathway by which obesity-induced circulating immune cells remotely manipulate mitochondrial metabolism in target organs. The strategic targeting of obese EVs or infiltrative immune cells and their specifically secreted RNAs emerges as a promising therapeutic avenue to forestall obesity-related renal afflictions.

16.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39011935

RESUMEN

Companionship refers to one's being in the presence of another individual. For adults, acquiring a new language is a highly social activity that often involves learning in the context of companionship. However, the effects of companionship on new language learning have gone relatively underexplored, particularly with respect to word learning. Using a within-subject design, the current study employs electroencephalography to examine how two types of companionship (monitored and co-learning) affect word learning (semantic and lexical) in a new language. Dyads of Chinese speakers of English as a second language participated in a pseudo-word-learning task during which they were placed in monitored and co-learning companionship contexts. The results showed that exposure to co-learning companionship affected the early attention stage of word learning. Moreover, in this early stage, evidence of a higher representation similarity between co-learners showed additional support that co-learning companionship influenced attention. Observed increases in delta and theta interbrain synchronization further revealed that co-learning companionship facilitated semantic access. In all, the similar neural representations and interbrain synchronization between co-learners suggest that co-learning companionship offers important benefits for learning words in a new language.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Encéfalo/fisiología , Aprendizaje/fisiología , Semántica , Multilingüismo , Lenguaje , Atención/fisiología , Aprendizaje Verbal/fisiología
17.
J Am Chem Soc ; 146(28): 19137-19145, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953468

RESUMEN

Anthracenylidene is an intriguing structural unit with potential in various fields. The study presents a novel approach to introducing axial chirality into this all-carbon core skeleton through a remotely controlled desymmetrization strategy. A palladium-catalyzed enantioselective Heck arylation of exocyclic double bond of anthracene with two distinct substituents at the C10 position is harnessed to realize such a transformation. The judicious identification of the P-centrally chiral ligand is pivotal to ensure the competitive competence in reactivity and stereocontrol when the heteroatom handle is absent from the anthracenylidene skeleton. Both C10 mono- and disubstituted substrates were compatible for the established catalytic system, and structurally diverse anthracenylidene-based frameworks were forged with good-to-high enantiocontrol. The subsequent derivatization of the obtained products yielded a valuable array of centrally and axially chiral molecules, thus emphasizing the practicality of this chemistry. DFT calculations shed light on the catalytic mechanism and provided insights into the origin of the experimentally observed enantioselectivity for this reaction.

18.
Int J Biol Macromol ; 274(Pt 1): 133014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852729

RESUMEN

Algal polysaccharides possess many biological activities and health benefits, such as antioxidant, anti-tumor, anti-coagulant, and immunomodulatory potential. Gut microbiota has emerged as one of the major contributor in mediating the health benefits of algal polysaccharides. In this study we showed that Haematococcus pluvialis polysaccharides (HPP) decreased serum transaminase levels and hepatic triglyceride content, alleviated inflammation and oxidative stress in the liver of chronic and binge ethanol diet-fed mice. Furthermore, HPP reduced endotoxemia, improved gut microbiota dysbiosis, inhibited epithelial barrier disruption and gut vascular barrier (GVB) damage in ethanol diet-fed mice. Co-housing vehicle-fed mice with HPP-fed mice alleviated ethanol-induced liver damage and endotoxemia. Moreover, fecal microbiota transplantation from HPP-fed mice into antibiotic-induced microbiota-depleted recipients also alleviated ethanol-induced liver injury and improved gut epithelial and vascular barrier. Our study demonstrated that HPP ameliorated ethanol-induced gut epithelial and vascular barrier dysfunction through alteration of gut microbiota, therefore preventing alcoholic liver damage.


Asunto(s)
Chlorophyceae , Hígado Graso , Microbioma Gastrointestinal , Mucosa Intestinal , Polisacáridos , Chlorophyceae/química , Polisacáridos/farmacología , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Microbioma Gastrointestinal/efectos de los fármacos , Etanol/toxicidad , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Hígado Graso/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Permeabilidad Capilar/efectos de los fármacos , Heces/microbiología , Estrés Oxidativo/efectos de los fármacos
19.
Geroscience ; 46(5): 4895-4908, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38831184

RESUMEN

Excessive growth hormone (GH) has been shown to promote joint degeneration in both preclinical and clinical studies. Little is known about the effect of disrupted GH or GH receptor (GHR) on joint health. The goal of this study is to investigate joint pathology in mice with either germline (GHR-/-) or adult inducible (iGHR-/-) GHR deficiency. Knee joints from male and female GHR-/- and WT mice at 24 months of age were processed for histological analysis. Also, knee joints from male and female iGHR-/- and WT mice at 22 months of age were scanned by micro-CT (µCT) for subchondral bone changes and characterized via histology for cartilage degeneration. Joint sections were also stained for the chondrocyte hypertrophy marker, COLX, and the cartilage degeneration marker, ADAMTS-5, using immunohistochemistry. Compared to WT mice, GHR-/- mice had remarkably smooth articular joint surfaces and an even distribution of proteoglycan with no signs of degeneration. Quantitatively, GHR-/- mice had lower OARSI and Mankin scores compared to WT controls. By contrast, iGHR-/- mice were only moderately protected from developing aging-associated OA. iGHR-/- mice had a significantly lower Mankin score compared to WT. However, Mankin scores were not significantly different between iGHR-/- and WT when males and females were analyzed separately. OARSI scores did not differ significantly between WT and iGHR-/- in either individual or combined sex analyses. Both GHR-/- and iGHR-/- mice had fewer COLX+ hypertrophic chondrocytes compared to WT, while no significant difference was observed in ADAMTS-5 staining. Compared to WT, a significantly lower trabecular thickness in the subchondral bone was observed in the iGHR-/- male mice but not in the female mice. However, there were no significant differences between WT and iGHR-/- mice in the bone volume to total tissue volume (BV/TV), bone mineral density (BMD), and trabecular number in either sex. This study identified that both germline and adult-induced GHR deficiency protected mice from developing aging-associated OA with more effective protection in GHR-/- mice.


Asunto(s)
Condrocitos , Hipertrofia , Receptores de Somatotropina , Animales , Femenino , Condrocitos/metabolismo , Condrocitos/patología , Masculino , Ratones , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Ratones Noqueados , Microtomografía por Rayos X , Cartílago Articular/patología , Cartílago Articular/metabolismo , Modelos Animales de Enfermedad , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis/metabolismo , Osteoartritis/patología
20.
Plant J ; 119(3): 1558-1569, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865085

RESUMEN

Heat stress is an environmental factor that significantly threatens crop production worldwide. Nevertheless, the molecular mechanisms governing plant responses to heat stress are not fully understood. Plant zinc finger CCCH proteins have roles in stress responses as well as growth and development through protein-RNA, protein-DNA, and protein-protein interactions. Here, we reveal an integrated multi-level regulation of plant thermotolerance that is mediated by the CCCH protein C3H15 in Arabidopsis. Heat stress rapidly suppressed C3H15 transcription, which attenuated C3H15-inhibited expression of its target gene HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), a central regulator of heat stress response (HSR), thereby activating HEAT SHOCK COGNATE 70 (HSC70.3) expression. The RING-type E3 ligase MED25-BINDING RING-H2 PROTEIN 2 (MBR2) was identified as an interacting partner of C3H15. The mbr2 mutant was susceptible to heat stress compared to wild-type plants, whereas plants overexpressing MBR2 showed increased heat tolerance. MBR2-dependent ubiquitination mediated the degradation of phosphorylated C3H15 protein in the cytoplasm, which was enhanced by heat stress. Consistently, heat sensitivities of C3H15 overexpression lines increased in MBR2 loss-of-function and decreased in MBR2 overexpression backgrounds. Heat stress-induced accumulation of HSC70.3 promoted MBR2-mediated degradation of C3H15 protein, implying that an auto-regulatory loop involving C3H15, HSFA2, and HSC70.3 regulates HSR. Heat stress also led to the accumulation of C3H15 in stress granules (SGs), a kind of cytoplasmic RNA granule. This study advances our understanding of the mechanisms plants use to respond to heat stress, which will facilitate technologies to improve thermotolerance in crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico , Termotolerancia , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Termotolerancia/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA