Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Adv ; 10(22): eadk7214, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809984

RESUMEN

Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.


Asunto(s)
Toma de Decisiones , Macaca mulatta , Corteza Visual , Animales , Corteza Visual/fisiología , Toma de Decisiones/fisiología , Masculino , Neuronas/fisiología , Movimiento/fisiología , Percepción de Movimiento/fisiología , Movimientos Sacádicos/fisiología , Estimulación Luminosa
2.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306983

RESUMEN

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Asunto(s)
Movimiento , Neuronas , Encéfalo/fisiología , Movimiento/fisiología , Neuronas/fisiología , Tálamo/fisiología , Memoria
3.
Nat Neurosci ; 26(11): 1916-1928, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814026

RESUMEN

The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.


Asunto(s)
Cerebelo , Corteza Motora , Ratones , Animales , Cerebelo/fisiología , Neuronas/fisiología , Corteza Cerebelosa , Corteza Motora/fisiología , Movimiento/fisiología , Vías Nerviosas/fisiología , Imagen por Resonancia Magnética
4.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34697075

RESUMEN

Recently developed probes for extracellular electrophysiological recordings have large numbers of electrodes on long linear shanks. Linear electrode arrays, such as Neuropixels probes, have hundreds of recording electrodes distributed over linear shanks that span several millimeters. Because of the length of the probes, linear probe recordings in rodents usually cover multiple brain areas. Typical studies collate recordings across several recording sessions and animals. Neurons recorded in different sessions and animals thus have to be aligned to each other and to a standardized brain coordinate system. Here, we evaluate two typical workflows for localization of individual electrodes in standardized coordinates. These workflows rely on imaging brains with fluorescent probe tracks and warping 3D image stacks to standardized brain atlases. One workflow is based on tissue clearing and selective plane illumination microscopy (SPIM), whereas the other workflow is based on serial block-face two-photon (SBF2P) microscopy. In both cases electrophysiological features are then used to anchor particular electrodes along the reconstructed tracks to specific locations in the brain atlas and therefore to specific brain structures. We performed groundtruth experiments, in which motor cortex outputs are labeled with ChR2 and a fluorescence protein. Light-evoked electrical activity and fluorescence can be independently localized. Recordings from brain regions targeted by the motor cortex reveal better than 0.1-mm accuracy for electrode localization, independent of workflow used.


Asunto(s)
Encéfalo , Neuronas , Animales , Encéfalo/diagnóstico por imagen , Electrodos , Electrodos Implantados , Fenómenos Electrofisiológicos
5.
J Neurosci ; 38(4): 989-999, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29229704

RESUMEN

In the visual system, the response to a stimulus in a neuron's receptive field can be modulated by stimulus context, and the strength of these contextual influences vary with stimulus intensity. Recent work has shown how a theoretical model, the stabilized supralinear network (SSN), can account for such modulatory influences, using a small set of computational mechanisms. Although the predictions of the SSN have been confirmed in primary visual cortex (V1), its computational principles apply with equal validity to any cortical structure. We have therefore tested the generality of the SSN by examining modulatory influences in the middle temporal area (MT) of the macaque visual cortex, using electrophysiological recordings and pharmacological manipulations. We developed a novel stimulus that can be adjusted parametrically to be larger or smaller in the space of all possible motion directions. We found, as predicted by the SSN, that MT neurons integrate across motion directions for low-contrast stimuli, but that they exhibit suppression by the same stimuli when they are high in contrast. These results are analogous to those found in visual cortex when stimulus size is varied in the space domain. We further tested the mechanisms of inhibition using pharmacological manipulations of inhibitory efficacy. As predicted by the SSN, local manipulation of inhibitory strength altered firing rates, but did not change the strength of surround suppression. These results are consistent with the idea that the SSN can account for modulatory influences along different stimulus dimensions and in different cortical areas.SIGNIFICANCE STATEMENT Visual neurons are selective for specific stimulus features in a region of visual space known as the receptive field, but can be modulated by stimuli outside of the receptive field. The SSN model has been proposed to account for these and other modulatory influences, and tested in V1. As this model is not specific to any particular stimulus feature or brain region, we wondered whether similar modulatory influences might be observed for other stimulus dimensions and other regions. We tested for specific patterns of modulatory influences in the domain of motion direction, using electrophysiological recordings from MT. Our data confirm the predictions of the SSN in MT, suggesting that the SSN computations might be a generic feature of sensory cortex.


Asunto(s)
Modelos Neurológicos , Percepción de Movimiento/fisiología , Lóbulo Temporal/fisiología , Animales , Femenino , Macaca mulatta , Estimulación Luminosa
6.
Neuron ; 95(2): 436-446.e3, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28689980

RESUMEN

Perceptual decisions require the transformation of raw sensory inputs into cortical representations suitable for stimulus discrimination. One of the best-known examples of this transformation involves the middle temporal area (MT) of the primate visual cortex. Area MT provides a robust representation of stimulus motion, and previous work has shown that it contributes causally to performance on motion discrimination tasks. Here we report that the strength of this contribution can be highly plastic: depending on the recent training history, pharmacological inactivation of MT can severely impair motion discrimination, or it can have little detectable influence. Further analysis of neural and behavioral data suggests that training moves the readout of motion information between MT and lower-level cortical areas. These results show that the contribution of individual brain regions to conscious perception can shift flexibly depending on sensory experience.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/fisiología , Percepción de Movimiento/fisiología , Lóbulo Temporal/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Discriminación en Psicología/fisiología , Femenino , Macaca mulatta , Movimiento (Física) , Estimulación Luminosa/métodos
7.
Elife ; 52016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27228283

RESUMEN

In theory, sensory perception should be more accurate when more neurons contribute to the representation of a stimulus. However, psychophysical experiments that use larger stimuli to activate larger pools of neurons sometimes report impoverished perceptual performance. To determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to discriminate the direction of motion of visual stimuli that varied in size across trials, while simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We used the resulting data to constrain a computational model that explained the behavioral data as an interaction of three main mechanisms: noise correlations, which prevented stimulus information from growing with stimulus size; neural surround suppression, which decreased sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs between sensitivity and noise in neuronal populations.


Asunto(s)
Percepción de Movimiento , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Simulación por Computador , Femenino , Macaca mulatta , Modelos Neurológicos
8.
J Neurosci ; 36(14): 4121-35, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053217

RESUMEN

The responses of sensory neurons can be quite different to repeated presentations of the same stimulus. Here, we demonstrate a direct link between the trial-to-trial variability of cortical neuron responses and network activity that is reflected in local field potentials (LFPs). Spikes and LFPs were recorded with a multielectrode array from the middle temporal (MT) area of the visual cortex of macaques during the presentation of continuous optic flow stimuli. A maximum likelihood-based modeling framework was used to predict single-neuron spiking responses using the stimulus, the LFPs, and the activity of other recorded neurons. MT neuron responses were strongly linked to gamma oscillations (maximum at 40 Hz) as well as to lower-frequency delta oscillations (1-4 Hz), with consistent phase preferences across neurons. The predicted modulation associated with the LFP was largely complementary to that driven by visual stimulation, as well as the activity of other neurons, and accounted for nearly half of the trial-to-trial variability in the spiking responses. Moreover, the LFP model predictions accurately captured the temporal structure of noise correlations between pairs of simultaneously recorded neurons, and explained the variation in correlation magnitudes observed across the population. These results therefore identify signatures of network activity related to the variability of cortical neuron responses, and suggest their central role in sensory cortical function. SIGNIFICANCE STATEMENT: The function of sensory neurons is nearly always cast in terms of representing sensory stimuli. However, recordings from visual cortex in awake animals show that a large fraction of neural activity is not predictable from the stimulus. We show that this variability is predictable given the simultaneously recorded measures of network activity, local field potentials. A model that combines elements of these signals with the stimulus processing of the neuron can predict neural responses dramatically better than current models, and can predict the structure of correlations across the cortical population. In identifying ways to understand stimulus processing in the context of ongoing network activity, this work thus provides a foundation to understand the role of sensory cortex in combining sensory and cognitive variables.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Evocados Visuales/fisiología , Algoritmos , Animales , Femenino , Macaca mulatta , Modelos Neurológicos , Red Nerviosa/citología , Red Nerviosa/fisiología , Estimulación Luminosa , Células Receptoras Sensoriales/fisiología , Corteza Visual/fisiología
9.
J Neurosci ; 33(42): 16715-28, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133273

RESUMEN

Neuronal selectivity results from both excitatory and suppressive inputs to a given neuron. Suppressive influences can often significantly modulate neuronal responses and impart novel selectivity in the context of behaviorally relevant stimuli. In this work, we use a naturalistic optic flow stimulus to explore the responses of neurons in the middle temporal area (MT) of the alert macaque monkey; these responses are interpreted using a hierarchical model that incorporates relevant nonlinear properties of upstream processing in the primary visual cortex (V1). In this stimulus context, MT neuron responses can be predicted from distinct excitatory and suppressive components. Excitation is spatially localized and matches the measured preferred direction of each neuron. Suppression is typically composed of two distinct components: (1) a directionally untuned component, which appears to play the role of surround suppression and normalization; and (2) a direction-selective component, with comparable tuning width as excitation and a distinct spatial footprint that is usually partially overlapping with excitation. The direction preference of this direction-tuned suppression varies widely across MT neurons: approximately one-third have overlapping suppression in the opposite direction as excitation, and many other neurons have suppression with similar direction preferences to excitation. There is also a population of MT neurons with orthogonally oriented suppression. We demonstrate that direction-selective suppression can impart selectivity of MT neurons to more complex velocity fields and that it can be used for improved estimation of the three-dimensional velocity of moving objects. Thus, considering MT neurons in a complex stimulus context reveals a diverse set of computations likely relevant for visual processing in natural visual contexts.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Percepción de Movimiento/fisiología , Neuronas/fisiología , Lóbulo Temporal/fisiología , Animales , Mapeo Encefálico , Femenino , Macaca mulatta , Masculino , Orientación/fisiología , Estimulación Luminosa , Vías Visuales/fisiología , Percepción Visual/fisiología
10.
J Neurophysiol ; 110(1): 63-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23596331

RESUMEN

The estimation of motion information from retinal input is a fundamental function of the primate dorsal visual pathway. Previous work has shown that this function involves multiple cortical areas, with each area integrating information from its predecessors. Compared with neurons in the primary visual cortex (V1), neurons in the middle temporal (MT) area more faithfully represent the velocity of plaid stimuli, and the observation of this pattern selectivity has led to two-stage models in which MT neurons integrate the outputs of component-selective V1 neurons. Motion integration in these models is generally complemented by motion opponency, which refines velocity selectivity. Area MT projects to a third stage of motion processing, the medial superior temporal (MST) area, but surprisingly little is known about MST responses to plaid stimuli. Here we show that increased pattern selectivity in MST is associated with greater prevalence of the mechanisms implemented by two-stage MT models: Compared with MT neurons, MST neurons integrate motion components to a greater degree and exhibit evidence of stronger motion opponency. Moreover, when tested with more challenging unikinetic plaid stimuli, an appreciable percentage of MST neurons are pattern selective, while such selectivity is rare in MT. Surprisingly, increased motion integration is found in MST even for transparent plaid stimuli, which are not typically integrated perceptually. Thus the relationship between MST and MT is qualitatively similar to that between MT and V1, as repeated application of basic motion mechanisms leads to novel selectivities at each stage along the pathway.


Asunto(s)
Percepción de Movimiento/fisiología , Neuronas/fisiología , Lóbulo Temporal/fisiología , Animales , Macaca mulatta , Corteza Visual/fisiología
11.
J Neurophysiol ; 108(1): 5-17, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22457462

RESUMEN

Deep brain stimulation (DBS) in the globus pallidus internus (GPi) has been shown to improve dystonia, a movement disorder of repetitive twisting movements and postures. DBS at frequencies above 60 Hz improves dystonia, but the mechanisms underlying this frequency dependence are unclear. In patients undergoing dual-microelectrode mapping of the GPi, microstimulation has been shown to reduce neuronal firing, presumably due to synaptic GABA release. This study examined the effects of different microstimulation frequencies (1-100 Hz) and train length (0.5-20 s), with and without prior high-frequency stimulation (HFS) on neuronal firing and evoked field potentials (fEPs) in 13 dystonia patients. Pre-HFS, the average firing decreased as stimulation frequency increased and was silenced above 50 Hz. The average fEP amplitudes increased up to frequencies of 20-30 Hz but then declined and at 50 Hz, were only at 75% of baseline. In some cases, short latency fiber volleys and antidromic-like spikes were observed and followed high frequencies. Post-HFS, overall firing was reduced compared with pre-HFS, and the fEP amplitudes were enhanced at low frequencies, providing evidence of inhibitory synaptic plasticity in the GPi. In a patient with DBS electrodes already implanted in the GPi, recordings from four neurons in the subthalamic nucleus showed almost complete inhibition of firing with clinically effective but not clinically ineffective stimulation parameters. These data provide additional support for the hypothesis of stimulation-evoked GABA release from afferent synaptic terminals and reduction of neuronal firing during DBS and additionally, implicate excitation of GPi axon fibers and neurons and enhancement of inhibitory synaptic transmission by high-frequency GPi DBS as additional putative mechanisms underlying the clinical benefits of DBS in dystonia.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Distonía/terapia , Globo Pálido/fisiología , Potenciales de Acción/fisiología , Adulto , Anciano , Análisis de Varianza , Biofisica , Femenino , Globo Pálido/patología , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Inhibición Neural/fisiología , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA