Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Pollut ; 360: 124653, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39095002

RESUMEN

Protozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds. The impact of NPs and MPs on the production of dimethyl sulfoxide (DMSO) and carbonyl sulfide (COS) remains unclear. Therefore, we examined the impacts of three concentrations (1 × 105, 5 × 105, and 1 × 106 items/mL) of polystyrene (PS) NPs (50 nm) and MPs (1 and 5 µm) on the ecotoxicology and DMS/dimethylsulfoniopropionate (DMSP)/DMSO/COS production in the ciliate Uronema marinum. NPs and MPs exposure were found to reduce the abundance, growth rate, volume, and biomass of U. marinum. Additionally, NPs and MPs increased the superoxide anion radical (O2˙─) production rates and malondialdehyde (MDA) contents (24 h), leading to a decline in glutathione (GSH) content and an ascend in superoxide dismutase (SOD) activity to mitigate the effects of reactive oxygen species (ROS). Exposure to PS NPs and MPs decreased the ingestion rates of algae by 7.5-14.4%, resulting in decreases in DMS production by 56.8-85.4%, with no significant impact on DMSO production. The results suggest a distinct pathway for the production of DMSO or COS compared to DMS. These findings help us to understand the NPs and MPs impacts on the marine ecosystem and organic sulfur compound yield, potentially influencing the global climate.

2.
Environ Pollut ; 360: 124649, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39095004

RESUMEN

Dimethyl sulfide (DMS) is a prevalent volatile organic sulfur compound relevant to the global climate. Ecotoxicological effects of nano- and microplastics (NPs and MPs) on phytoplankton, zooplankton, and bacteria have been investigated by numerous studies. Yet, the influences of NPs/MPs on dimethylated sulfur compounds remains understudied. Herein, we investigated the impacts of polystyrene (PS) NPs/MPs (80 nm, 1 µm, and 10 µm) on zooplankton grazing, chlorophyll a (Chl a) concentration, bacterial community, dimethylsulfoniopropionate (DMSP), and DMS production in the microcosms. Our findings revealed that rotifer grazing increased the production of DMS in the absence of NPs/MPs but did not promote DMS production when exposed to NPs/MPs. The ingestion rates of the rotifer and copepod exposed to NPs/MPs at high concentrations were significantly reduced. NPs/MPs exposure significantly decreased DMS levels in the treatments with rotifers compared to the animal controls. In the bacterial microcosms, smaller NPs/MPs sizes were more detrimental to Chl a concentrations compared to larger sizes. The study revealed a stimulatory effect on Chl a concentrations, DMSPd concentrations, and bacterial abundances when exposed to 10 µm MP with low concentrations. The effects of NPs/MPs on DMS concentrations were both dose- and size-dependent, with NPs showing greater toxicity compared to larger MPs. NPs/MPs led to changes in bacterial community compositions, dependent on both dosage and size. NPs caused a notable decrease in the alpha diversities and richness of bacteria compared to MPs. These results provide insights into the influences of NPs/MPs on food webs, and subsequently organic sulfur compounds cycles.

3.
Sleep Breath ; 28(4): 1731-1742, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772968

RESUMEN

PURPOSE: Major Depressive Disorder (MDD) and Insomnia Disorder (ID) are prevalent psychiatric conditions often occurring concurrently, leading to substantial impairment in daily functioning. Understanding the neurobiological underpinnings of these disorders and their comorbidity is crucial for developing effective interventions. This study aims to analyze changes in functional connectivity within attention networks and default mode networks in patients with depression and insomnia. METHODS: The functional connectivity alterations in individuals with MDD, ID, comorbid MDD and insomnia (iMDD), and healthy controls (HC) were assessed from a cohort of 174 participants. They underwent rs-fMRI scans, demographic assessments, and scale evaluations for depression and sleep quality. Functional connectivity analysis was conducted using region-of-interest (ROI) and whole-brain methods. RESULTS: The MDD and iMDD groups exhibited higher Hamilton Depression Scale (HAMD) scores compared to HC and ID groups (P < 0.001). Both ID and MDD groups displayed enhanced connectivity between the left and right orbital frontal cortex compared to HC (P < 0.05), while the iMDD group showed reduced connectivity compared to HC and ID groups (P < 0.05). In the left insula, reduced connectivity with the right medial superior frontal gyrus was observed across patient groups compared to HC (P < 0.05), with the iMDD group showing increased connectivity compared to MDD (P < 0.05). Moreover, alterations in functional connectivity between the left thalamus and left temporal pole were found in iMDD compared to HC and MDD (P < 0.05). Correlation analyses revealed associations between abnormal connectivity and symptom severity in MDD and ID groups. CONCLUSIONS: Our findings demonstrate distinct patterns of altered functional connectivity in individuals with MDD, ID, and iMDD compared to healthy controls. These findings contribute to a better understanding of the pathophysiology of depression and insomnia, which could be used as a reference for the diagnosis and treatments of these patients.


Asunto(s)
Red en Modo Predeterminado , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Masculino , Femenino , Adulto , Trastorno Depresivo Mayor/fisiopatología , Persona de Mediana Edad , Red en Modo Predeterminado/fisiopatología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Atención/fisiología , Comorbilidad , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Conectoma
4.
Environ Pollut ; 351: 124084, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697245

RESUMEN

Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 µm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.


Asunto(s)
Antioxidantes , Haptophyta , Especies Reactivas de Oxígeno , Sulfuros , Compuestos de Sulfonio , Contaminantes Químicos del Agua , Antioxidantes/metabolismo , Compuestos de Sulfonio/metabolismo , Haptophyta/crecimiento & desarrollo , Haptophyta/metabolismo , Haptophyta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Clorofila/metabolismo , Superóxido Dismutasa/metabolismo , Nanopartículas/toxicidad , Poliestirenos/toxicidad
5.
Mar Environ Res ; 197: 106481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593647

RESUMEN

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Animales , Agua de Mar/química , Azufre/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Fitoplancton , China , Zooplancton/metabolismo
6.
Environ Pollut ; 344: 123308, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185352

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B. plicatilis and accumulated in the digestive tract. The lethal rates of B. plicatilis exposed to NPs were dose-dependent. High concentrations of PS NPs exposure had negative effects on developmental duration, leading to prolonged embryonic development and pre-reproductive periods, shortened reproductive period, post-reproductive period, and lifespan in B. plicatilis. High concentrations of PS NPs exposure inhibited life table demographic parameters such as age-specific survivorship and fecundity, generation time, net reproductive rate, and life expectancy. Consequently, the population of B. plicatilis was adversely impacted. Furthermore, exposure to PS NPs resulted in a reduced ingestion rate in B. plicatilis, as well as a decreased in DMS, particulate DMSP (DMSPp) concentration, and DMSP lyase activity (DLA), which exhibited a dose-response relationship. B. plicatilis grazing promoted DLA and therefore increased DMS production. PS NPs exposure caused a decline in the increased DMS induced by rotifer grazing. Our results help to understand the ecotoxicity of NPs on rotifer and their impact on the biogeochemical cycle of dimethylated sulfur compounds.


Asunto(s)
Rasgos de la Historia de Vida , Rotíferos , Sulfuros , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/farmacología , Poliestirenos/farmacología , Ingestión de Alimentos , Contaminantes Químicos del Agua/toxicidad
7.
Front Oncol ; 12: 993921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185194

RESUMEN

Background: The purpose of this study was to define and analyze the characteristics of the top 100 most-cited articles and reviews on the topic of pheochromocytomas and paragangliomas (PPGLs) by using bibliometric methods. Methods: We explored the Web of Science Core Collection database to gather the 100 top-cited original articles and reviews of PPGL from 1985 to 20 December 2020. We conducted a bibliometric study to identify the most influential journals, authors, countries, and institutions in the PPGL field. Results: The 100 top-cited papers were cited a total number of 25,723 times, ranging from 131 to 1,144 (mean, 257.23 ± 173.64). All of these 100 top-cited papers were published between 1999 and 2017, and the number of top-cited papers published before 2008 (1999-2008) was significantly higher than that after 2008 (2009-2017) (p = 0.043). The journal with the highest number of published papers is the Journal of Clinical Endocrinology & Metabolism (n = 23). The United States was the most productive country in this topic, which published about half of these publications (n = 51). The National Institutes of Health (NIH) had the largest number of publications (n = 17). Genes or genetics is still the hottest topic in the field of PPGLs. Conclusions: We defined and analyzed the top 100 most-cited papers in the field of PPGLs by gathering detailed information. These data provided insights into the most influential studies related to PPGL. We hoped to inspire researchers and readers in this field to improve their understanding of PPGL research trends and provide ideas for future research from unique perspectives.

8.
J Hazard Mater ; 424(Pt B): 127441, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673396

RESUMEN

The natural ecosystem will continually deteriorate for decades by the leakage of Cs and Sr isotopes. The exploration of the new materials or techniques for the efficient treatment of radioactive wastewater is critically important. In this study, a dielectric barrier discharge (DBD) configuration was constructed to operate the non-thermal plasma (NTP). The NTP was incorporated into the synthesis of polyaluminum chloride (PAC) in two different procedures to intensify the synthesis of PAC (NTP-PAC) and enhance the further removal of Cs and Sr from wastewater. The employment of NTP in two procedures both had significantly changed the physicochemical characteristics of PAC materials, which facilitated the further adsorption application of NTP-PAC on the treatment of Cs+ and Sr2+. Different molecular, morphological, and adsorption characteristics were confirmed to the NTP-PAC materials. The heterogeneous adsorption of the NTP-PAC can be appropriately fitted by both the pseudo-first-order kinetic model and the Elovich model. Both physisorption and chemisorption reaction mechanisms were ensured for the heterogeneous adsorption of the NTP-PAC material towards Cs+ and Sr2+, which guaranteed the excellent adsorption performance of NTP-PAC materials compared to PAC. The electron collisions caused by NTP with alum pulp created highly reactive growth precursors and intensified the nucleation and hydrolysis polymerization of PAC. The employment of NTP explicitly broadens the reaction pathways between PAC and cationic contaminants in the aqueous environment, which expands the application area of PAC materials in environmental sustainability.


Asunto(s)
Gases em Plasma , Adsorción , Hidróxido de Aluminio , Ecosistema
9.
J Environ Sci (China) ; 107: 14-25, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34412777

RESUMEN

The layered laurylsulfonate intercalated green rust (lauryl-S GR) was synthesized to evaluate the influence of synthesis parameters and aqueous conditions on the adsorption of CeIV. The maximum adsorption capacity of 305.58 mg/g by lauryl-S GR was predictably obtained. The pseudo-first-order kinetic model was appropriate in fitting the whole uptake process in a weak acid environment. Three isotherm models including Langmuir, Freundlich, and Tempkin were all reliable in depicting the isotherm adsorption process. The maximum monolayer adsorption capacity of lauryl-S GR towards CeIV was 315.46 mg/g. Ce species including CeO and Ce2O3 besides CeO2 were matched in the XPS distribution, directly indicating the reduction reaction brought by FeII in the GR occurred to hydrated CeIV ions during the adsorption. Nano-sized Ce particles attached to the lauryl-S GRs after the adsorption experiments were observed in the morphological characterization. Flocculated materials were formed on the surface of the lauryl-S GR at a pH of 7, which further reduced the active sites and disrupted the continuous uptake of CeIV to the lauryl-S GR. This study expands the application of GRs and supplies an ideal iron-based material for the construction of the affiliated recovery pathway to the traditional separation of Ce.


Asunto(s)
Cerio , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética
10.
Environ Sci Pollut Res Int ; 28(26): 34824-34837, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33661495

RESUMEN

In this work, microwave (MW) irradiation was employed to enhance the zero-valent iron (ZVI)-dominated de-contamination of chromite ore processing residue (COPR). A coupling system and the traditional two-step procedure were both conducted to evaluate the effects of MW irradiation on the reduction and the incorporation of COPR into the composite materials-based geopolymers. The factors including the ratios of liquid to solid, the mass ratios of ZVI to COPR, and the acid dosage had some obvious influence on the reduction of COPR in the MW system. The compressive strengths of 31.54 and 41.56 MPa were determined from the two-step procedure and the coupling system at the COPR dosage of 10% (mass ratio), respectively. The employment of MW irradiation not only strengthened the formation of the geopolymer matrices but also improved the chemical stabilization of Cr species in the solidified blocks. The coupled process was more conducive to incorporating the treated COPR into the geopolymer-based crystalline microstructures compared with the subsequent usage of ZVI reduction and MW irradiation.


Asunto(s)
Cromo , Hierro , Cromo/análisis , Residuos Industriales/análisis , Microondas
11.
Ecotoxicol Environ Saf ; 213: 112003, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588188

RESUMEN

A green rust-coated expanded perlite (GR-coated Exp-p) microelectrode was synthesized and incorporated into a column-mode three-dimensional electrokinetic (3D-EK) platform to effectively pursue a continuous Cr(VI) removal from the aqueous solution. Brucite-like layers of GR were decorated onto the Exp-p material. The molar ratio of Fe(II) to Fe(III) played a most vital role among the three synthesis factors in influencing the performance of the particle electrode. For the equilibrium adsorption experiments, the target maximum adsorption capacity of 122 mg/g was predicted by a target optimizer and desirability function at the conditions following the pH of 4.7, the initial concentration of 172.4 mg/L, the dosage of 0.28 g/L, and the temperature of 28.96 °C, respectively. SO42-, Cl-, and NO3- fiercely competed with Cr(VI) anions in the acidic conditions for the locally positive sites. A low concentration and a slow flow were favored in the column-mode 3D-EK platform. The pseudo-first-order and Langmuir models were suitable for describing the kinetics and isotherms of the adsorption process, respectively. Cr(VI) anions were electrostatically attracted to the silanol groups and GR surface of the adsorbent, subsequently reduced in both heterogeneity and homogeneity, and finally immobilized by coordinating with silanediol groups and silanetriol groups.


Asunto(s)
Cromo/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Óxido de Aluminio , Aniones , Electrodos , Compuestos Férricos , Concentración de Iones de Hidrógeno , Cinética , Dióxido de Silicio , Temperatura , Agua , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 263: 128319, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297252

RESUMEN

Green rust functionalized geopolymer of composite cementitious materials (GR-CCM) was synthesized to improve the adsorption and subsequent stabilization/solidification of chromate in a holistic operating system. The initial pH in solution exhibited the most significant effect on the chromate removal by GR-CCM among three adsorption factors. The maximum monolayer adsorption capacity and theoretical saturation capacity of GR-CCM for Cr(VI) in the acidic condition were 55.01 mg/g and 41.70 mg/g, respectively. Amorphousness brought by loading GR weakened the crystallinity of composite cementitious materials (CCM), which enhanced the adsorption capacity of CCM and boosted the solidification process. The mixed-valent iron species in the GR-CCM not only directly engaged in the adsorption and reduction of chromate also positively strengthened the solidification of Cr species during the whole treatment. This study facilitates the application of GRs on the geopolymer materials and demonstrates the combination of adsorption and immobilization for the treatment of other potential heavy metal contamination.


Asunto(s)
Cromatos , Metales Pesados , Adsorción , Ceniza del Carbón , Hierro
13.
J Environ Manage ; 280: 111697, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33246753

RESUMEN

Biohazard performance of Sr radionuclide can be significantly magnified by its release from the contaminated sedimentation. In this study, hydroxyapatite nanoparticle-functionalized activated carbon electrode (AC-HAP) was synthesized and stacked to the cathode compartment of the electrokinetic (EK) system to develop a unipolar three-dimensional (3D) electrochemical process for Sr2+ removal from spiked soils. Sr2+ adsorption by AC-HAP can be fitted by the pseudo-first-order and pseudo-second-order kinetic models and the Langmuir, Freundlich, and Temkin isotherm models. The largest monolayer adsorption capacity of AC-HAP of 69.49 mg g-1 was evaluated in the pH range of 10-12 and at 40 °C. 3D EK further intensified the adsorption process of AC-HAP and the corresponding Sr2+ removal from aqueous environments. Voltage gradients and proposing time had a significant effect on the migration and transmission of Sr2+ in the electrolyzer. The influence of competitive ions on Sr2+ removal in the stock solutions followed Al3+ < Mg2+ < K+ < Na+ < Ca2+ while followed Al3+ < Na+ < K+ < Mg2+ < Ca2+ in 3D EK. The first three cycles for AC-HAP had taken roughly 50% of the reusability percentage. Sr2+ removal from spiked samples in 3D EK was achieved by acid dissolution, electromigration, and selective uptake on particle electrode.


Asunto(s)
Carbón Orgánico , Nanopartículas , Adsorción , Durapatita , Electrodos , Suelo , Estroncio
14.
Chemosphere ; 241: 125069, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31614313

RESUMEN

An inadvertent leakage of 90Sr into the environment can induce an easy accumulation in biosphere and cause a continuous radiation to the surrounding ecosystem. In this study, sodium hexametaphosphate (Na6O18P6) was employed to modify the blast furnace slags (BFS) to enhance the chemical stabilization of Sr2+ ions in the BFS-based cementitious materials. Microwave irradiation (MW) was used to further increase the binder activity of BFS samples and strengthened the mechanical strengths and durability of BFS-based blocks. A combination of experimental factors including the mass ratio of Na6O18P6 to BFS-Sr0.1 of 15%, the ratio of solid to liquid of 1:4 mg/L, the output power of 650 W, and the activation time of 3 min was most conductive to achieving an optimal microwave-irradiation process. Four extraction solutions were sorted by their leaching abilities following as MgSO4 solution > H2SO4 solution > CH3OOH solution > deionized (DI) water based on their leaching results. Compared with microwave irradiation, an addition of Na6O18P6 to BFS samples obtained a better compressive strength for BFS-based blocks. However, a microwave-irradiation treatment was more effective in improving the resistances of blocks to gamma irradiation and thermal-thaw changes. Exposing to gamma irradiation over 6 months and enduring to thermal-thaw tests over 15 cycles, the microwave-treated blocks only lost 3.29% and 2.23% of leaching removal efficiencies in deionized water, respectively. Microwave irradiation increased the mechanical strengths of BFS-based blocks and inhibited leaching of Sr2+ ions from matrices mainly by strengthening hydration reactions and Sr2+ encapsulation.


Asunto(s)
Microondas , Modelos Químicos , Fosfatos/química , Estroncio/química , Álcalis , Fuerza Compresiva , Ecosistema , Agua
15.
Biochem Biophys Res Commun ; 519(2): 246-252, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31495492

RESUMEN

BACKGROUND: Bladder cancer (BCa) is one of the most common urological malignancies. While Inositol-3-phosphate synthase 1 (ISYNA1) expression and function were largely unknown in BCa. We aimed to study the expression and role of ISYNA1 in bladder cancer and investigate its potential mechanisms via ingenuity pathway analysis (IPA). METHODS: ISYNA1 expression was quantified by qRT-PCR in bladder cancer cell lines as well as normal urothelial cell line. Knocking down ISYNA1 gene in BCa T24 cells was achieved by shRNA lentivirus transfection. MTT and Celigo assay were used to assess cell proliferation. Flow cytometry was applied to test cell cycle and apoptosis. In addition, IPA was performed using PrimeView™ Human Gene Expression Array. Imunohistochemistry (IHC) was performed in BCa patient tissue microarray to verify the association between ISYNA1 expression and patients' clinicopathological features. RESULTS: ISYNA1 was significantly upregulated in BCa samples vs. para-tumor tissues. Higher expression were significantly associated with tumor T stage and lymph node metastasis of bladder cancer patients. Similarly, it was elevated in BCa cell lines (5637 and T24) compared with SVHUC cells. Knocking down ISYNA1 significantly decreased proliferation, induced apoptosis and cell cycle arrest in T24 cells. Furthermore, IPA indicated that ISYNA1 was an important regulatory factors and related networks were involved in multiple functional processes. CONCLUSION: Taken together, current study suggest ISYNA1 promotes proliferation and inhibit apoptosis in bladder cancer cells, and its expression correlated with BCa patients' clinicopathological features. Thus, ISYNA1 may serve as a potential biomarker and therapeutic target for BCa patients.


Asunto(s)
Apoptosis , Liasas Intramoleculares/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proliferación Celular , Femenino , Humanos , Liasas Intramoleculares/genética , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/patología
16.
Oncol Lett ; 17(2): 1974-1979, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30675263

RESUMEN

The present study aimed to investigate the association of the invasiveness of colon cancer (CC) with the expression of CCAAT/enhancer binding protein α (C/EBPα). Immunohistochemistry was performed to determine the expression of C/EBPα in the cancer and adjacent tissue samples from 48 patients with CC. A pCDGFP-C/EBPα eukaryotic expression vector was constructed, and a wound-healing assay was performed to observe the effect of transfection on the migration of SW480 cells. In addition, the expression levels of tumor invasion-associated proteins, including Kruppel-like factor 5 (KLF5), matrix metallopeptidase (MMP)-2, MMP-9, and E-cadherin (ECD) were detected subsequent to transfection. Immunohistochemistry analysis demonstrated that the rate of low C/EBPα expression in normal tissue was 6.25%, whereas the rate in CC tissues was 68.75%; this difference was statistically significant (P<0.05). The patients with lower C/EBPα expression exhibited statistically larger tumor diameters, more advanced tumor-node-metastasis (TMN) stages and a greater likelihood of lymph node metastasis. The overexpression of C/EBPα significantly reduced the mobility of SW480 cells, and the expression of KLF5, MMP-2 and MMP-9 was reduced, whereas the expression of ECD was increased. In conclusion, C/EBPα was downregulated in CC tissue samples, and associated with the TMN stage and metastasis of CC; in addition, the overexpression of C/EBPα significantly reduced the invasiveness of CC cells. This may be significant for the diagnosis and treatment of CC in the future.

17.
J Cell Physiol ; 234(8): 13592-13601, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30609030

RESUMEN

Bladder cancer (BCa) is one of the most prevalent cancers of the urinary system worldwide. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) perform a vital function in the pathogenesis and progression of BCa. In the current study, we identified a novel lncRNA OXCT1-AS1 and investigated its role and potential mechanisms in BCa. The microarray results showed the expression of lncRNAs, microRNAs, and messenger RNAs between BCa primary tumor tissues and metastatic lymph nodes were significantly different. The quantitative polymerase chain reaction verification was performed to ensure the reliability of the screening results. The Cell Counting Kit 8 and transwell assay were used to assess the tumor cell proliferation and invasion abilities in vitro, respectively. The dual-luciferase activity assay was performed to investigate the potential mechanism of competing endogenous RNA network. lncRNA OXCT1-AS1, which elevated in metastasis lymph node, was significantly upregulated in BCa cell lines compared with SVHUC-1. We demonstrated OXCT1-AS1 inhibited miR-455-5p to decrease its binding to the JAK1 3'-untranslated region, which could upregulate the expression of JAK1 at the protein level, thus promoting BCa proliferation and invasion. Therefore, lncRNA OXCT1-AS1 could act as a potential biomarker and therapeutic target for patients with BCa.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Janus Quinasa 1/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Proliferación Celular/genética , Perfilación de la Expresión Génica , Humanos , Janus Quinasa 1/genética , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante/genética , Transducción de Señal/fisiología , Neoplasias de la Vejiga Urinaria/genética
18.
J Cancer ; 9(24): 4774-4782, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588263

RESUMEN

Background: Bladder cancer is one of the most common malignancies in urologic system. The glucocorticoid-inducible kinase 2 (SGK2) expression and function were largely unknown in cancers. Current study was aimed to investigate the role of SGK2 in bladder cancer and its potential mechanisms. Methods: SGK2 expression was quantified by western blot (WB) in multiple bladder cancer cell lines (T24, 5637, J82 and UMUC3) compared with normal urothelial cell line (SVHUC). SGK2 knocking down and overexpression model were established by lentivirus transfection. MTT, colony formation, wound healing and transwell assay were used to assess the tumor cell proliferation, migration and invasion abilities, respectively. In addition, molecular function analysis was performed using FunRich software V3. Immunoprecipitation (IP) assay was applied to investigate the interaction between SGK2 and ß-catenin at protein level. TCGA database was retrieved to verify the association between these genes and clinical tumor stage as well as prognosis among bladder cancer patients. Results: SGK2 expression was significantly upregulated in multiple bladder cancer cell lines compared with SVHUC at protein level. Cell proliferation, migration and invasion abilities were significantly decreased after knocking down SGK2 in J82 and UMUC3 cell lines. Inversely, cell aggressive phenotypes were significantly increased after overexpressing SGK2 in T24 cell line. Furthermore, functional analyses of SGK2 based on TCGA database showed that SGK2 related genes were involved in receptor activity, ATP binding, DNA repair protein, trans-membrane receptor activity and lipid binding. In addition, protein interaction analysis identified c-Myc was significantly enriched in SGK2 positively associated genes. The prediction was validated by WB and IP assay that SGK2 could directly bind with ß-catenin at protein level to regulate their downstream gene c-Myc expression in bladder cancer to influence tumor progression. And clinical data generated from TCGA database also identified these downstream genes were significantly associated with tumor stage and survival status of bladder cancer patients. Conclusion: Taken together, our findings suggest SGK2 promotes bladder cancer progression via mediating ß-catenin/c-Myc signaling pathway, which may serve as a potential therapeutic target for bladder cancer patients.

19.
Medicine (Baltimore) ; 97(30): e11596, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30045293

RESUMEN

BACKGROUND: Recent clinical trials indicated that metformin intake might play a protective role in the incidence and oncologic outcomes of various cancers. However, its protective effect on bladder cancer remains uncertain. METHODS: We performed a meta-analysis to investigate the association between metformin intake and bladder cancer risk as well as oncologic outcomes in diabetes mellitus (DM) patients. A comprehensive literature search was performed using PubMed, Embase, and the Cochrane Central Search Library in December 2017. Hazard ratio (HR) with 95% confidence interval (CI) was pooled. RESULTS: A total of 9 retrospective cohort studies with 1,270,179 patients were included. A meta-analysis revealed that metformin intake was associated with an increased recurrence-free survival (HR = 0.55, 95% confidence interval [CI] = 0.35-0.88; P = .01; I = 64%), improved progression-free survival (HR = 0.70, 95% CI = 0.51-0.96; P = .03; I = 33%), and prolonged cancer-specific survival (HR = 0.57, 95% CI = 0.40-0.81; P = .002; I = 0%). However, results demonstrated that metformin intake was not associated with a decreased incidence of bladder cancer (HR = 0.82, 95% CI = 0.61-1.09; P = .17; I = 85%) or an increased overall survival in bladder cancer patients (HR = 0.83, 95% CI = 0.47-1.44; P = .50; I = 64%). CONCLUSION: The present meta-analysis indicated that metformin intake could improve the prognosis of bladder cancer patients. Further prospective cohort studies and mechanistic studies are still required to determine the precise role of metformin in the initiation and progression of bladder cancer.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Neoplasias de la Vejiga Urinaria/mortalidad , Anciano , Diabetes Mellitus Tipo 2/complicaciones , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Neoplasias de la Vejiga Urinaria/etiología
20.
Front Physiol ; 9: 715, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942264

RESUMEN

Objective: Previous studies indicated potential associations between polymorphisms in genes of VEGF/hypoxia/angiogenesis pathway and risk of urogenital carcinomas However, the results were controversial and inconclusive. Here, we conducted an in-depth meta-analysis to investigate the precise associations between polymorphisms in VEGF/hypoxia/angiogenesis related genes and risk of urogenital carcinomas. Methods: We searched PubMed, Web of Science, EMBASE, and Cochrane Library to identify all eligible publications. Pooled odds ratios (ORs) corresponding with the 95% confidence intervals (CIs) were calculated to evaluate their associations. Subgroup analysis was conducted to further ascertain such relationship and investigate sources of heterogeneity. Results: In the end, a total of 96 case-control studies fulfilled the inclusion criteria were enrolled for 12 polymorphisms in 4 VEGF/hypoxia/angiogenesis related genes. The pooled results showed eNOS-rs2070744 polymorphism conferred a significantly increased overall risk of urogenital carcinomas in allele, homozygote, and recessive models, respectively. In addition, eNOS-Intron 4a/b VNTR polymorphism was identified related to an increased risk of urogenital carcinomas in recessive model. And VEGF-rs699947 polymorphism was also identified an increased risk of renal cell carcinoma (RCC) in allelic, heterozygote, dominant, homozygote, and recessive models. Conclusion: To conclude, eNOS-rs2070744 and eNOS-Intron 4a/b VNTR polymorphisms are risk factors for urogenital carcinomas. VEGF-rs699947 polymorphism was also identified as an increased risk factor for renal carcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA