Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Front Public Health ; 12: 1433538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257948

RESUMEN

Background: Annual declines in university students' physical health have an impact on social stability and the nation's long-term growth. Parenting style, which is crucial to a child's growth and development, may have a big influence on physical health. This study delves into the effects of different parenting styles on the physical fitness of Chinese college students under gender differences. Methods: Through random allocation and stratified sampling methods, this study comprehensively investigated 3,151 undergraduate students (male = 1,365; female = 1786) with an average age of 18.44 years (SD = 1.46), from a university in Jiangsu Province, China. Parenting styles of college students were evaluated by the Parental Bonding Instrument (PBI). Physical fitness tests were based on the Chinese National Student Physical Fitness Standards including body mass index, lung capacity, standing-long-jump, bent-leg-sit-up, seated forward bend, pull-ups, 50 m sprint, and 800/1,000 m run. Further investigations focused on the relationship between parenting styles and physical health by statistical analysis methods such as Pearson correlation and multiple linear regression. Results: Significant differences were identified in gender, family members, and academic majors in most of the correlation indicators between different parenting styles and physical health among college students. Further analysis showed that the parenting styles of democratic and authoritative mothers and democratic fathers were more conducive to the promotion of physical health among female university students. The combination of a democratic fathering style and a permissive mothering style is considered an ideal parenting model for male students. Conclusion: This study confirmed that different parenting styles have a significant impact on the physical health of college students. Positive parenting styles may improve physical health, while negative ones are likely to have adverse effects, especially among female students. It is also important to notice differentiated parenting styles with respect to male and female university students. Therefore, more attention should be raised on parenting styles to enhance physical health of the student population.


Asunto(s)
Responsabilidad Parental , Aptitud Física , Estudiantes , Humanos , Femenino , Masculino , Estudiantes/psicología , Estudiantes/estadística & datos numéricos , China , Universidades , Adolescente , Adulto Joven , Factores Sexuales , Relaciones Padres-Hijo
2.
Langmuir ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265139

RESUMEN

Empowering biocatalyst-modified electrodes with the ability to both enforce and perceive will enable the development of intrinsically switchable bioelectrode systems, which exhibit autonomous and heteronomous actions specific to living organisms. However, the electrocatalytic activity of switchable bioelectrodes reported so far has been controlled by changes in the rate of substrate transport to biocatalysts. Here, we prepared a cup-stacked carbon nanofiber (CSCNF) electrode modified with a thermoresponsive N-isopropylacrylamide-based polymer containing peroxidase model compounds (HP). As CSCNFs worked as a converter from near-infrared (NIR) light to heat, bioelectrocatalytic activity of the electrode to H2O2 reduction was reversibly controlled by changes in the amount of electroactive HP, based on expanded and contracted states of the polymers induced by not only environmental temperature changes but also external NIR light irradiation. This intrinsically switchable bioelectrode technique would hold promise for adding new performances in electrochemical biosensors and biofuel cells, for example, autonomous and heteronomous tunable sensitivity and capacity.

3.
J Fungi (Basel) ; 10(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39194840

RESUMEN

Myxomycetes are an important component of terrestrial ecosystems, and in order to understand their diversity and phylogenetic relationships, taxonomic issues need to be addressed. In our 1985-2021 biodiversity investigations in Shaanxi Province, Jilin Province, the Inner Mongolia Autonomous Region, Hubei Province, and Henan Province, China, Diderma samples were observed on rotten leaves, rotten branches, and dead wood. The samples were studied, based on morphological features coupled with multigene phylogenetic analyses of nSSU, EF-1α, and COI sequence data, which revealed two new species (Diderma shaanxiense sp. nov. and D. clavatocolumellum sp. nov.) and two known species (D. radiatum and D. globosum). In addition, D. radiatum and D. globosum were newly recorded in Henan Province and the Inner Mongolia Autonomous Region, respectively. The paper includes comprehensive descriptions, detailed micrographs, and the outcomes of phylogenetic analyses for both the newly discovered and known species. Additionally, it offers morpho-logical comparisons between the new species and similar ones.

4.
Environ Sci Pollut Res Int ; 31(38): 50709-50721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098974

RESUMEN

Recycling industrial solid wastes as building materials in the construction field exhibits great environmental benefits. This study designed an eco-friendly non-sintered brick by combining multiple industrial solid wastes, including sewage sludge, fly ash, and phosphorus gypsum. The mechanical properties, microstructure, and environmental impacts of waste-based non-sintered bricks (WNBs) were investigated comprehensively. The results revealed that WNB exhibited excellent mechanical properties. In addition, steam curing could further promote the strength development of WNB. The compressive strength of WNB with 10 wt% of sewage sludge reached 13.5 MPa. Phase assemblage results indicated that the incorporation of sewage sludge promoted the generation of ettringite. Mercury intrusion porosimetry results demonstrated that the pore structure of WNB varies with the dosage of sewage sludge. Life-cycle assessment results revealed that the energy consumption and CO2 emission of WNB were 45% and 17% lower than those of traditional clay bricks. Overall, the development of WNB in this study provided insights into the co-disposal of industrial solid wastes.


Asunto(s)
Materiales de Construcción , Residuos Industriales , Reciclaje , Aguas del Alcantarillado/química , Ceniza del Carbón/química , Residuos Sólidos
5.
Sci Rep ; 14(1): 18019, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097676

RESUMEN

Accurate, fast and lightweight dense target detection methods are highly important for precision agriculture. To detect dense apricot flowers using drones, we propose an improved dense target detection method based on YOLOv8, named D-YOLOv8. First, we introduce the Dense Feature Pyramid Networks (D-FPN) to enhance the model's ability to extract dense features and Dense Attention Layer (DAL) to focus on dense target areas, which enhances the feature extraction ability of dense areas, suppresses features in irrelevant areas, and improves dense target detection accuracy. Finally, RAW data are used to enhance the dataset, which introduces additional original data into RAW images, further enriching the feature input of dense objects. We perform validation on the CARPK challenge dataset and constructed a dataset. The experimental results show that our proposed D-YOLOv8m achieved 98.37% AP, while the model parameters were only 13.2 million. The improved network can effectively support any task of dense target detection.

6.
Environ Pollut ; 359: 124579, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032547

RESUMEN

To improve the water environment quality, the development of an effective photocatalyst for pollutant removal was considered a promising strategy. The aim of the development of a novel photocatalyst PNC is pursued by modifying copper-phenylacetylide (PhC2Cu) with nitrogen-doped carbon quantum dots (N-CDs). Leading to a remarkable improvement in its light absorption capability, electron transfer efficiency and photoelectrochemical properties. Importantly, PNC possesses the characteristic of straightforward synthesis and demonstrates remarkable performance in the photodegradation of 99.87% sulfamethoxazole (SMX) within just 15 min, with a 3.95-fold increase in the photocatalytic rate. Analysis of the active substances revealed that 1O2, O2·-, and h+ are the generated active species by PNC. Active sites and degradation pathways of SMX were explored through density functional theory (DFT) calculations and intermediate analysis. Key evidence regarding the direction of electron transfer within the system was obtained through in-situ irradiated X-ray (ISI-XPS) techniques. This study deepened our understanding of the electron transfer characteristics of phenylacetylene copper and provided new insights for the modification of photocatalysts.


Asunto(s)
Carbono , Cobre , Puntos Cuánticos , Contaminantes Químicos del Agua , Purificación del Agua , Carbono/química , Cobre/química , Puntos Cuánticos/química , Cinética , Contaminantes Químicos del Agua/química , Transporte de Electrón , Purificación del Agua/métodos , Nitrógeno/química , Fotólisis , Catálisis , Sulfametoxazol/química , Técnicas Electroquímicas/métodos , Procesos Fotoquímicos
7.
Comput Biol Med ; 179: 108814, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944902

RESUMEN

Peptides, with recognized physiological and medical implications, such as the ability to lower blood pressure and lipid levels, are central to our research on umami taste perception. This study introduces a computational strategy to tackle the challenge of identifying optimal umami receptors for these peptides. Our VmmScore algorithm includes two integral components: Mlp4Umami, a predictive module that evaluates the umami taste potential of peptides, and mm-Score, which enhances the receptor matching process through a machine learning-optimized molecular docking and scoring system. This system encompasses the optimization of docking structures, clustering of umami peptides, and a comparative analysis of docking energies across peptide clusters, streamlining the receptor identification process. Employing machine learning, our method offers a strategic approach to the intricate task of umami receptor determination. We undertook virtual screening of peptides derived from Lateolabrax japonicus, experimentally verifying the umami taste of three identified peptides and determining their corresponding receptors. This work not only advances our understanding of the mechanisms behind umami taste perception but also provides a rapid and cost-effective method for peptide screening. The source code is publicly accessible at https://github.com/heyigacu/mlp4umami/, encouraging further scientific exploration and collaborative efforts within the research community.


Asunto(s)
Aprendizaje Profundo , Péptidos , Péptidos/química , Humanos , Animales , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Simulación del Acoplamiento Molecular , Programas Informáticos , Percepción del Gusto/fisiología , Algoritmos , Gusto/fisiología
8.
J Agric Food Chem ; 72(26): 14760-14768, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899439

RESUMEN

Potato common scab (PCS) is a widespread plant disease that lacks effective control measures. Using a small molecule elicitor, we activate the production of a novel class of polyketide antibiotics, streptolateritic acids A-D, in Streptomyces sp. FXJ1.172. These compounds show a promising control efficacy against PCS and an unusual acyclic pentacarboxylic acid structure. A gene cluster encoding a type I modular polyketide synthase is identified to be responsible for the biosynthesis of these metabolites. A cytochrome P450 (CYP) and an aldehyde dehydrogenase (ADH) encoded by two genes in the cluster are proposed to catalyze iterative oxidation of the starter-unit-derived methyl group and three of six branching methyl groups to carboxylic acids during chain assembly. Our findings highlight how activation of silent biosynthetic gene clusters can be employed to discover completely new natural product classes able to combat PCS and new types of modular polyketide synthase-based biosynthetic machinery.


Asunto(s)
Proteínas Bacterianas , Familia de Multigenes , Enfermedades de las Plantas , Sintasas Poliquetidas , Solanum tuberosum , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Enfermedades de las Plantas/microbiología , Solanum tuberosum/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Vías Biosintéticas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo
9.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894064

RESUMEN

Wire-arc additive manufacturing (WAAM) is favored by the industry for its high material utilization rate and low cost. However, wire-arc additive manufacturing of lattice structures faces problems with forming accuracy such as broken rod and surface morphology defects, which cannot meet the industrial demand. This article innovatively combines the melt pool stress theory with visual perception algorithms to visually study the force balance of the near-suspended melt pool to predict the state of the melt pool. First, the method for melt pool segmentation was studied. The results show that the optimized U-net achieved high accuracy in melt pool segmentation tasks, with accuracies of 98.18%, MIOU 96.64%, and Recall 98.34%. In addition, a method for estimating melt pool force balance and predicting normal, sagging, and collapsing states of the melt pool is proposed. By combining experimental testing with computer vision technology, an analysis of the force balance of the melt pool during the inclined rod forming process was conducted, showing a prediction rate as high as 90% for the testing set. By using this method, monitoring and predicting the state of the melt pool is achieved, preemptively avoiding issues of broken rods during the printing process. This approach can effectively assist in adjusting process parameters and improving welding quality. The application of this method will further promote the development of intelligent unmanned WAAM and provide some references for the development of artificial intelligence monitoring systems in the manufacturing field.

10.
Mol Plant Pathol ; 25(6): e13459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38808386

RESUMEN

F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.


Asunto(s)
Resistencia a la Enfermedad , Proteínas F-Box , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Ubiquitinación , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Inmunidad de la Planta/genética , Ascomicetos/patogenicidad
11.
J Phys Condens Matter ; 36(39)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697131

RESUMEN

In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.

12.
Research (Wash D C) ; 7: 0342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694200

RESUMEN

Recently, the development of the Metaverse has become a frontier spotlight, which is an important demonstration of the integration innovation of advanced technologies in the Internet. Moreover, artificial intelligence (AI) and 6G communications will be widely used in our daily lives. However, the effective interactions with the representations of multimodal data among users via 6G communications is the main challenge in the Metaverse. In this work, we introduce an intelligent cross-modal graph semantic communication approach based on generative AI and 3-dimensional (3D) point clouds to improve the diversity of multimodal representations in the Metaverse. Using a graph neural network, multimodal data can be recorded by key semantic features related to the real scenarios. Then, we compress the semantic features using a graph transformer encoder at the transmitter, which can extract the semantic representations through the cross-modal attention mechanisms. Next, we leverage a graph semantic validation mechanism to guarantee the exactness of the overall data at the receiver. Furthermore, we adopt generative AI to regenerate multimodal data in virtual scenarios. Simultaneously, a novel 3D generative reconstruction network is constructed from the 3D point clouds, which can transfer the data from images to 3D models, and we infer the multimodal data into the 3D models to increase realism in virtual scenarios. Finally, the experiment results demonstrate that cross-modal graph semantic communication, assisted by generative AI, has substantial potential for enhancing user interactions in the 6G communications and Metaverse.

13.
J Am Chem Soc ; 146(21): 14864-14874, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38754389

RESUMEN

The exploitation of carbon dioxide (CO2) as a sustainable, plentiful, and harmless C1 source for the catalytic synthesis of enantioenriched carboxylic acids has long been acknowledged as a pivotal task in synthetic chemistry. Herein, we present a current-driven nickel-catalyzed reductive carboxylation reaction with CO2 fixation, facilitating the formation of C(sp3)-C(sp2) bonds by circumventing the handling of moisture-sensitive organometallic reagents. This electroreductive protocol serves as a practical platform, paving the way for the synthesis of enantioenriched propargylic carboxylic acids (up to 98% enantiomeric excess) from racemic propargylic carbonates and CO2. The efficacy of this transformation is exemplified by its successful utilization in the asymmetric total synthesis of (S)-arundic acid, (R)-PIA, (S)-chizhine D, (S)-cochlearin G, and (S,S)-alexidine, thereby underscoring the potential of asymmetric electrosynthesis to achieve complex molecular architectures sustainably.

15.
ACS Appl Mater Interfaces ; 16(22): 29177-29187, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781454

RESUMEN

Allergic reactions can profoundly influence the quality of life. To address the health risks posed by allergens and overcome the permeability limitations of the current filter materials, this work introduces a novel microhoneycomb (MH) material for practical filter applications such as masks. Through a synthesis process integrating ice-templating and a gas-phase post-treatment with silane, MH achieves unprecedented levels of moisture resistance and mechanical stability while preserving the highly permeable microchannels. Notably, MH is extremely elastic, with a 92% recovery rate after being compressed to 80% deformation. The filtration efficiency surpasses 98.1% against pollutant particles that simulate airborne pollens, outperforming commercial counterparts with fifth-fold greater air permeability while ensuring unparalleled user comfort. Moreover, MH offers a sustainable solution, being easily regenerated through back-flow blowing, distinguishing it from conventional nonwoven fabrics. Finally, a prototype mask incorporating MH is presented, demonstrating its immense potential as a high-performance filtration material, effectively addressing health risks posed by allergens and other harmful particles.

16.
Lancet Reg Health West Pac ; 46: 101062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38623390

RESUMEN

Background: The public health burden of cardiomyopathies and competency in their management by health agencies in China are not well understood. Methods: This study adopted a multi-stage sampling method for hospital selection. In the first stage, nationwide tertiary hospital recruitment was performed. As a result, 88 hospitals with the consent of the director of cardiology and access to an established electronic medical records system, were recruited. In the second stage, we sampled 66 hospitals within each geographic-economic stratification through a random sampling process. Data on (1) the outpatient and inpatient visits for cardiomyopathies between 2017 and 2021 and (2) the competency in the management of patients with cardiomyopathies, were collected. The competency of a hospital to provide cardiomyopathy care was evaluated using a specifically devised scale. Findings: The outpatient and inpatient visits for cardiomyopathies increased between 2017 and 2021 by 38.6% and 33.0%, respectively. Most hospitals had basic facilities for cardiomyopathy assessment. However, access to more complex procedures was limited, and the integrated management pathway needs improvement. Only 4 (6.1%) of the 66 participating hospitals met the criteria for being designated as a comprehensive cardiomyopathy center, and only 29 (43.9%) could be classified as a primary cardiomyopathy center. There were significant variations in competency between hospitals with different administrative and economic levels. Interpretation: The health burden of cardiomyopathies has increased significantly between 2017 and 2021 in China. Although most tertiary hospitals in China can offer basic cardiomyopathy care, more advanced facilities are not yet universally available. Moreover, inconsistencies in the management of cardiomyopathies across hospitals due to differing administrative and economic levels warrants a review of the nation allocation of medical resources. Funding: This work was supported by the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2023-I2M-1-001) and the National High Level Hospital Clinical Research Funding (2022-GSP-GG-17).

17.
BMC Anesthesiol ; 24(1): 134, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589819

RESUMEN

BACKGROUND: Dexmedetomidine has arousal sedation and analgesic effects. We hypothesize that epidural dexmedetomidine in single-dose combined with ropivacaine improves the experience of parturient undergoing cesarean section under epidural anesthesia. This study is to investigate the effect of 0.5 µg/kg epidural dexmedetomidine combined with epidural anesthesia (EA) in parturients undergoing cesarean section. METHODS: A total of 92 parturients were randomly divided into Group R (receiveing epidural ropivacaine alone) Group RD (receiveing epidural ropivacaine with 0.5 µg/kg dexmedetomidine). The primary outcome and second outcome will be intraoperative NRS pain scores and Ramsay Sedation Scale. RESULTS: All 92 parturients were included in the analysis. The NRS were significantly lower in Group RD compared to Group R at all observation timepoint (P > 0.05). Higher Ramsay Sedation Scale was found in Group RD compared to Group R (P < 0.001). No parturient has experienced sedation score of 4 and above. No significant difference regarding the incidence of hypotension, bradycardia and nausea or vomiting, Apgar scores and the overall satisfaction with anesthesia was found between Group R and Group RD (P > 0.05). CONCLUSION: Epidural dexmedetomidine of 0.5 µg/kg added slightly extra analgesic effect to ropivacaine in EA for cesarean section. The sedation of 0.5 µg/kg epidural dexmedetomidine did not cause mother-baby bonding deficit. Satisfaction with anesthesia wasn't significantly improved by epidural dexmedetomidine of 0.5 µg/kg. No additional side effect allows larger dose of epidural dexmedetomidine attempt. TRIAL REGISTRATION: This study was registered at www.chictr.org.cn (ChiCTR2000038853).


Asunto(s)
Anestesia Epidural , Dexmedetomidina , Femenino , Humanos , Embarazo , Analgésicos/uso terapéutico , Anestesia Epidural/efectos adversos , Anestésicos Locales , Cesárea/efectos adversos , Dolor/tratamiento farmacológico , Ropivacaína
18.
Climacteric ; 27(3): 227-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597210

RESUMEN

A growing number of people identify as transgender and gender non-binary in the USA and worldwide. Concomitantly, an increasing number of patients are receiving gender-affirming hormone therapy (GAHT) to achieve gender congruence. GAHT has far-ranging effects on clinical and subclinical markers of cardiovascular risk. Transgender patients also appear to be at higher risk for cardiovascular diseases compared to their cisgender peers and the impact of gender-affirming therapy on cardiovascular health is unclear. Studies on the effect of GAHT on cardiovascular outcomes are confounded by differences in GAHT regimens and methodological challenges in a diverse and historically hard-to-reach population. Current cardiovascular guidelines do not incorporate gender identity and hormone status into risk stratification and clinical decision-making. In this review, we provide an overview on the cardiometabolic impact and clinical considerations of GAHT for cardiovascular risk in transgender patients.


Asunto(s)
Enfermedades Cardiovasculares , Personas Transgénero , Humanos , Enfermedades Cardiovasculares/prevención & control , Femenino , Masculino , Terapia de Reemplazo de Hormonas/efectos adversos , Adulto , Procedimientos de Reasignación de Sexo/efectos adversos
19.
Angew Chem Int Ed Engl ; 63(22): e202404886, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38563659

RESUMEN

The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.

20.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542486

RESUMEN

Fresh green leaves give off a smell known as "green odor." It has antibacterial qualities and can be used to attract or repel insects. However, a common method for evaluating green odor molecules has never existed. Machine learning techniques are widely used in research to forecast molecular attributes for binary classification. In this work, the green odor molecules were first trained and learned using machine learning methods, and then clustering analysis and molecular docking were performed to further explore their molecular characteristics and mechanisms of action. For comparison, four algorithmic models were employed, MLP performed the best in all metrics, including Accuracy, Precision, Average Precision, Matthews coefficient, and Area under curve. We determined by difference analysis that, in comparison to non-green odor molecules, green odor molecules have a lower molecular mass and fewer electrons. Based on the MLP algorithm, we constructed a binary classification prediction website for green odors. The first application of deep learning techniques to the study of green odor molecules can be seen as a signal of a new era in which green odor research has advanced into intelligence and standardization.


Asunto(s)
Odorantes , Olfato , Simulación del Acoplamiento Molecular , Algoritmos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA