Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Cell Death Differ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103535

RESUMEN

Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.

2.
J Colloid Interface Sci ; 675: 1091-1099, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39032375

RESUMEN

Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs' oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs' robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg-1 and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g-1. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn2+ and CF3SO3- as well as chemical redox of Zn2+ with carbonyl/pyridine motifs forming O-Zn-N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.

3.
Bioact Mater ; 40: 244-260, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38973990

RESUMEN

Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics, including viscoelasticity and liquid crystal (LC) state. Thus, integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair. Despite extensive research on viscoelasticity, the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials. Moreover, the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood. Here, we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink. By utilizing these LC scaffolds as 3D research models, we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation, while viscoelasticity operates via mechanotransduction pathways. Additionally, our investigation revealed a synergistic effect between LC state and viscoelasticity, amplifying cell-protein interactions and osteogenic mechanotransduction processes. Furthermore, the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing. Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis, offering valuable insights for the biomimetic design of bone repair scaffolds.

4.
ACS Nano ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016265

RESUMEN

Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.

5.
Bioresour Technol ; 406: 130968, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876277

RESUMEN

This study evaluated the reflection of long-term anaerobic system exposed to sulfate and propionate. Fe@C was found to efficiently mitigate anaerobic sulfate inhibition and enhance propionate degradation. With influent propionate of 12000mgCOD/L and COD/SO42- ratio of 3.0, methane productivity and sulfate removal were only 0.06 ± 0.02L/gCOD and 63 %, respectively. Fe@C helped recover methane productivity to 0.23 ± 0.03L/gCOD, and remove sulfate completely. After alleviating sulfate stress, less organic substrate was utilized to form extracellular polymeric substances for self-protection, which enhanced mass transfer in anaerobic sludge. Microbial community succession, especially for alteration of key sulfate-reducing bacteria and propionate-oxidizing bacteria, was driven by Fe@C, thus enhancing sulfate reduction and propionate degradation. Acetotrophic Methanothrix and hydrogenotrophic unclassified_f_Methanoregulaceae were enriched to promote methanogenesis. Regarding propionate metabolism, inhibited methylmalonyl-CoA degradation was a limiting step under sulfate stress, and was mitigated by Fe@C. Overall, this study provides perspective on Fe@C's future application on sulfate and propionate rich wastewater treatment.


Asunto(s)
Metano , Propionatos , Sulfatos , Aguas Residuales , Propionatos/metabolismo , Sulfatos/metabolismo , Anaerobiosis , Metano/metabolismo , Reactores Biológicos/microbiología , Hierro/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Aguas del Alcantarillado/microbiología , Microbiota
6.
ChemSusChem ; : e202400886, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899510

RESUMEN

Recently, aqueous Zn-X (X=S, Se, Te, I2, Br2) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I2, Br2) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.

7.
Angew Chem Int Ed Engl ; 63(32): e202407491, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735853

RESUMEN

Ion-selective nanochannel membranes assembled from two-dimensional (2D) nanosheets hold immense promise for power conversion using salinity gradient. However, they face challenges stemming from insufficient surface charge density, which impairs both permselectivity and durability. Herein, we present a novel vacancy-engineered, oxygen-deficient NiCo layered double hydroxide (NiCoLDH)/cellulose nanofibers-wrapped carbon nanotubes (VOLDH/CNF-CNT) composite membrane. This membrane, featuring abundant angstrom-scale, cation-selective nanochannels, is designed and fabricated through a synergistic combination of vacancy engineering and interfacial super-assembly. The composite membrane shows interlayer free-spacing of ~3.62 Å, which validates the membrane size exclusion selectivity. This strategy, validated by DFT calculations and experimental data, improves hydrophilicity and surface charge density, leading to the strong interaction with K+ ions to benefit the low ion transport resistance and exceptional charge selectivity. When employed in an artificial river water|seawater salinity gradient power generator, it delivers a high-power density of 5.35 W/m2 with long-term durability (20,000s), which is almost 400 % higher than that of the pristine NiCoLDH membrane. Furthermore, it displays both pH- and temperature-sensitive ion transport behavior, offering additional opportunities for optimization. This work establishes a basis for high-performance salinity gradient power conversion and underscores the potential of vacancy engineering and super-assembly in customizing 2D nanomaterials for diverse advanced nanofluidic energy devices.

8.
Adv Healthc Mater ; 13(19): e2400707, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563114

RESUMEN

Existing artificial periostea face many challenges, including difficult-to-replicate anisotropy in mechanics and structure, poor tissue adhesion, and neglected synergistic angiogenesis and osteogenesis. Here, inspired by natural wood (NW), a wood-derived elastic artificial periosteum is developed to mimic the structure and functions of natural periosteum, which combines an elastic wood (EW) skeleton, a polydopamine (PDA) binder layer, and layer-by-layer (LBL) biofunctional layers. Specifically, EW derived from NW is utilized as the anisotropic skeleton of artificial periosteum to guide cell directional behaviors, moreover, it also shows a similar elastic modulus and flexibility to natural periosteum. To further enhance its synergistic angiogenesis and osteogenesis, surface LBL biofunctional layers are designed to serve as spatiotemporal release platforms to achieve sequential and long-term release of pamidronate disodium (PDS) and deferoxamine (DFO), which are pre-encapsulated in chitosan (CS) and hyaluronic acid (HA) solutions, respectively. Furthermore, the combined effect of PDA coating and LBL biofunctional layers enables the periosteum to tightly adhere to damaged bone tissue. More importantly, this novel artificial periosteum can boost angiogenesis and bone formation in vitro and in vivo. This study opens up a new path for biomimetic design of artificial periosteum, and provides a feasible clinical strategy for bone repair.


Asunto(s)
Osteogénesis , Periostio , Madera , Periostio/efectos de los fármacos , Madera/química , Animales , Osteogénesis/efectos de los fármacos , Liberación de Fármacos , Regeneración Ósea/efectos de los fármacos , Humanos , Anisotropía , Indoles/química , Indoles/farmacología , Ratones , Polímeros/química , Quitosano/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Neovascularización Fisiológica/efectos de los fármacos
9.
Small ; : e2400774, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616778

RESUMEN

Capacitive carbon cathodes deliver great potential for zinc-ion hybrid capacitors (ZHCs) due to their resource abundance and structural versatility. However, the dimension mismatch between the micropores of carbons and hydrated Zn2+ ions often results in unsatisfactory charge storage capability. Here well-arranged heterodiatomic carbon superstructures are reported with compatible pore dimensions for activating Zn2+ ions, initiated by the supramolecular self-assembly of 1,3,5-triazine-2,4,6-triamine and cyanuric acid via in-plane hydrogen-bonds and out-of-plane π-π interactions. Flower-shaped carbon superstructures expose more surface-active motifs, continuous charge-transport routes, and more importantly, well-developed pores. The primary subnanopores of 0.82 nm are size-exclusively accessible for solvated Zn2+ ions (0.86 nm) to maximize spatial charge storage, while rich mesopores (1-3 nm) allow for high-kinetics ion migration with a low activation energy. Such favorable superstructure cathodes contribute to all-round performance improvement for ZHCs, including high energy density (158 Wh kg-1), fast-charging ability (50 A g-1), and excellent cyclic lifespan (100 000 cycles). An anion-cation hybrid charge storage mechanism is elucidated for superstructure cathode, which entails alternate physical uptake of Zn2+/CF3SO3 - at electroactive pores and bipedal chemical binding of Zn2+ to electronegative carbonyl/pyridine motifs. This work expands the design landscape of carbon superstructures for advanced energy storage.

10.
Int J Biol Macromol ; 267(Pt 2): 131651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636746

RESUMEN

The plastics derived from fossil fuels for food packaging results in serious environmental problems. Developing environment-friendly materials for food packaging is urgent and essential. In this study, polylactic acid (PLA) composite nanofibers membranes were prepared with good biocompatibility and antibacterial property. Cu2+ loaded in the natural halloysite nanotubes (HNTs) was used for the antibacterial agent. Cu2+ was loaded in the HNTs and was confirmed by the X-ray photoelectron spectroscopy (XPS). PLA nanofibers with different HNTs-Cu content were continuous nanofibers with the nanoscale range. HNTs-Cu entered into the nanofiber successfully. Thermal analysis results showed composite nanofibers had good thermal stability. Composite nanofiber membranes had the good hydrophobic property. HNTs-Cu improved the mechanical property of composite nanofibers than pure PLA nanofibers. Tensile strength and elasticity modulus of composite nanofibers with 4 % HNTs-Cu content were the most outstanding. L929 cells were cultured on the nanofiber membranes for biocompatibility evaluation. Cell viability of nanofiber membranes was above the 90 %. Cell live/dead staining results showed L929 cells was seldom dead on the nanofiber membranes. PLA/HNTs-Cu nanofiber membranes exhibited excellent antibacterial effects on S. aureus and E. coli. The inhibitory rates against S. aureus and E. coli were 98.31 % and 97.80 % respectively. The fresh-keeping effects of nanofiber membranes were evaluated by the strawberry preservation. Strawberries covered by nanofiber membranes exhibited better appearance, lower weight loss and higher firmness than control, PLA and PLA/HNTs groups. It promised that PLA/HNTs-Cu composite nanofiber membranes have the significant potential application for active food packaging.


Asunto(s)
Antibacterianos , Arcilla , Cobre , Embalaje de Alimentos , Nanofibras , Nanotubos , Poliésteres , Staphylococcus aureus , Cobre/química , Cobre/farmacología , Nanofibras/química , Poliésteres/química , Nanotubos/química , Embalaje de Alimentos/métodos , Arcilla/química , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ratones , Membranas Artificiales , Animales , Línea Celular , Resistencia a la Tracción , Supervivencia Celular/efectos de los fármacos
11.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431420

RESUMEN

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Asunto(s)
Quitosano , Cristales Líquidos , Animales , Quitosano/química , Hidrogeles/farmacología , Hidrogeles/metabolismo , Quitina/farmacología , Quitina/metabolismo , Vibrisas , Andamios del Tejido/química , Regeneración Ósea , Ingeniería de Tejidos , Osteogénesis , Matriz Extracelular/metabolismo , Antibacterianos/farmacología
12.
ACS Appl Mater Interfaces ; 16(12): 15177-15192, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38471076

RESUMEN

Halloysite nanotubes (HNTs) are one-dimensional clay nanomaterials featuring distinct tubular structures and unique surface charges. HNTs can readily form ordered assembly structures under specific conditions, which shows significant potential applications in optical and biological fields. In this study, sodium hexametaphosphate (SHMP) was employed as a stabilizer to prepare polymer spherulite-like patterns via the evaporation-induced self-assembly (EISA) technique. The incorporation of SHMP enhanced the repulsion force among the nanotubes and the surface potential, which facilitated the orderly deposition of HNTs. The influence of HNT concentration, SHMP concentration, drying temperature, and substrate on the polymer spherulites-like pattern has been investigated in detail. The optimal conditions were 10 wt % HNT dispersion, 0.6 wt % SHMP concentration, 30 °C as drying temperature, and glass substrates. In addition, by changing the droplet volume and shape of the three-phase contact line, patterns of different sizes and shapes can be achieved. Bovine serum albumin or metal salt compounds were incorporated into the dispersion of SHMP-modified HNTs, which altered the charge and the self-assembled patterns with different area ratios. Thus, this technology can be utilized for the analysis and comparison of protein and metal ion concentration accurately. This study creates the correlation between the structural parameters and the preparation process involved in creating polymer spherulite-like patterns of modified HNTs and offers fresh insights into potential applications for the self-assembly of HNT droplets in the realms of anticounterfeiting and solution concentration analysis.

13.
Adv Sci (Weinh) ; 11(19): e2310319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477446

RESUMEN

Zinc-organic batteries (ZOBs) are receiving widespread attention as up-and-coming energy-storage systems due to their sustainability, operational safety and low cost. Charge carrier is one of the critical factors affecting the redox kinetics and electrochemical performances of ZOBs. Compared with conventional large-sized and sluggish Zn2+ storage, non-metallic charge carriers with small hydrated size and light weight show accelerated interfacial dehydration and fast reaction kinetics, enabling superior electrochemical metrics for ZOBs. Thus, it is valuable and ongoing works to build better ZOBs with non-metallic ion storage. In this review, versatile non-metallic cationic (H+, NH4 +) and anionic (Cl-, OH-, CF3SO3 -, SO4 2-) charge carriers of ZOBs are first categorized with a brief comparison of their respective physicochemical properties and chemical interactions with redox-active organic materials. Furthermore, this work highlights the implementation effectiveness of non-metallic ions in ZOBs, giving insights into the impact of ion types on the metrics (capacity, rate capability, operation voltage, and cycle life) of organic cathodes. Finally, the challenges and perspectives of non-metal-ion-based ZOBs are outlined to guild the future development of next-generation energy communities.

14.
Chem Sci ; 15(12): 4322-4330, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38516081

RESUMEN

Dendrite growth and parasitic reactions of a Zn metal anode in aqueous media hinder the development of up-and-coming Zn-ion batteries. Optimizing the crystal growth after Zn nucleation is promising to enable stable cyclic performance of the anode, but directly regulating specific crystal plane growth for homogenized Zn electrodeposition remains highly challenging. Herein, a perfluoropolymer (Nafion) is introduced into an aqueous electrolyte to activate a thermodynamically ultrastable Zn/electrolyte interface for long-term Zn-ion batteries. The low adsorption energy (-2.09 eV) of Nafion molecules on Zn metal ensures the in situ formation of a Nafion-nanofilm during the first charge process. This ultrathin artificial solid electrolyte interface with zincophilic -SO3- groups guides the directional Zn2+ electrodeposition along the (002) crystal surface even at high current density, yielding a dendrite-free Zn anode. The synergic Zn/electrolyte interphase electrochemistry contributes an average coulombic efficiency of 99.71% after 4500 cycles for Zn‖Cu cells, and Zn‖Zn cells achieve an ultralong lifespan of over 7000 h at 5 mA cm-2. Besides, Zn‖MnO2 cells operate well over 3000 cycles. Even at -40 °C, Zn‖Zn cells achieve stable Zn2+ plating/stripping for 1200 h.

15.
Sci Technol Adv Mater ; 25(1): 2327276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532983

RESUMEN

Micropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes. Highly ordered micropatterns of halloysite, such as coffee rings, regular strips, and concentric circles, can be obtained through high-temperature evaporation-induced self-assembly in a confined space and shear-force brush-induced orientation. Assembly of these clay nanotubes on biological surfaces, including the coating of human or animal hair, wool, and cotton, was generalized with the indication of common features. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, medical hemostasis, and flame-retardant tissue applications. An interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its core-shell structure (functionalization with quantum dots) was described in comparison with microfiber nanoclay coatings. In addition to being abundantly available in nature, halloysite is also biosafe, which makes its spontaneous surface micropatterning prospective for high-performance materials, and it is a promising technique with potential for an industrial scale-up.


This international group of authors unites researchers who pioneered halloysite clay nanotubes for biomaterials, and discloses a new strategy for this nanoclay composite design through interfacial architecture. These results confirm Dr. K. Ariga concept of nanoarchitectonics, and demonstrate promising applications. Assembly of the clay nanotubes on biosurfaces, including the coating of human or animal hair, wool, and cotton, was generalized for the process optimization. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, and medical hemostasis and flame-retardant tissue applications. Related techniques of interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its quantum dots core­shell structure for cell imaging are also described. Contrary to many other synthetic nanomaterials, described natural halloysite nanotubes are environmentally safe and abundantly available, thus allowing for scale up of the suggested functional biocomposites.

16.
Angew Chem Int Ed Engl ; 63(16): e202401049, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372434

RESUMEN

Bipolar organics fuse the merits of n/p-type redox reactions for better Zn-organic batteries (ZOBs), but face the capacity plafond due to low density of active units and single-electron reactions. Here we report multielectron redox-bipolar tetranitroporphyrin (TNP) with quadruple two-electron-accepting n-type nitro motifs and dual-electron-donating p-type amine moieties towards high-capacity-voltage ZOBs. TNP cathode initiates high-kinetics, hybrid anion-cation 10e- charge storage involving four nitro sites coordinating with Zn2+ ions at low potential and two amine species coupling with SO4 2- ions at high potential. Consequently, Zn||TNP battery harvests high capacity (338 mAh g-1), boosted average voltage (1.08 V), and outstanding energy density (365 Wh kg-1 TNP). Moreover, the extended π-conjugated TNP macrocycle achieves anti-dissolution in electrolytes, prolonging the battery life to 50,000 cycles at 10 A g-1 with 71.6 % capacity retention. This work expands the chemical landscape of multielectron redox-bipolar organics for state-of-the-art ZOBs.

17.
Angew Chem Int Ed Engl ; 63(13): e202315122, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38311601

RESUMEN

Dendrites growth and unstable interfacial Li+ transport hinder the practical application of lithium metal batteries (LMBs). Herein, we report an active layer of 2,4,6-trihydroxy benzene sulfonyl fluorine on copper substrate that induces oriented Li+ deposition and generates highly crystalline solid-electrolyte interphase (SEI) to achieve high-performance LMBs. The lithiophilic -SO2 - groups of highly crystalline SEI accept the rapidly transported Li+ ions and form a dense inner layer of LiF and Li3 N, which regulate Li+ plating morphology along the (110) crystal surface toward dendrite-free Li anode. Thus, Li||Cu cells with lithiophilic SEI achieve an average deposition efficiency of 99.8 % after 700 cycles, and Li||Li cells operate well for 1100 h. Besides, Li||LiNi0.8 Co0.1 Mn0.1 O2 cells with modified SEI exhibit a capacity retention that is 14 times than that of conventional SEI. Even at -60 °C, Li||Cu cells reach stable deposition efficiency of 83.2 % after 100 cycles.

18.
Bioresour Technol ; 395: 130284, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219925

RESUMEN

The role of metal organic framework (MOF) modified cathode in promoting long chain fatty acid (LCFA) methanation was identified in microbial electrolysis cell coupled anaerobic digestion (MEC-AD) system. The maximum methane production rate of MEC-AD-MOF achieved 49.8 ± 3.4 mL/d, which increased by 41 % compared to MEC-AD-C. The analysis of bio-cathode biofilm revealed that microbial activity, distribution, population, and protein secretion prompted by MOF cathode, which in turn led to an acceleration of electron transfer between the cathode and microbes. Specifically, the relative abundance of acetate-oxidizing bacterium (Mesotoga) in MEC-AD-MOF was 1.5-3.6 times higher than that in MEC-AD-C, with a co-metabolized enrichment of Methanobacterium. Moreover, MOF cathode reinforced LCFA methanation by raising the relative abundance of genes coded key enzymes involved in CO2-reducing pathway, and elevating the tolerance of microbes to LCFA inhibition. These results indicate that MOF can enhance biofilm construction in MEC-AD, thereby improving the treatment performance of lipid wastewater.


Asunto(s)
Estructuras Metalorgánicas , Anaerobiosis , Reactores Biológicos , Metano , Ácidos Grasos , Transporte de Electrón , Electrólisis , Electrodos
19.
Carbohydr Polym ; 328: 121728, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220327

RESUMEN

Conductive hydrogels show extensive applications in flexible electronics and biomedical areas, but it is a challenge to simultaneously achieve high mechanical properties, satisfied electrical conductivity, good biocompatibility, self-recovery and anti-freezing properties through a simple preparation method. Herein, chitin nanocrystals (ChNCs) were employed to encapsulate liquid metal nanoparticles (LMNPs) to ensure the dispersion stability of LMNPs in a hydrogel system composed of polyacrylamide (PAM) and polyvinyl alcohol (PVA). The synergistic effect of ChNCs-stabilized LMNPs imparts remarkable conductivity to the hydrogel, making it an effective strain sensor for human motion. With 1 % LMNPs, the composite hydrogel stretches up to 2100 %, showing excellent stretchability. Under 10 cycles of 200 % strain, hysteresis loop curves overlap, indicating outstanding fatigue resistance. The hydrogel exhibits remarkable self-recovery, enduring 1400 % deformation without rupture. In addition, its effective antifreeze properties result from immersion in a glycerol-water solvent. Even at -20 °C and 60 °C, the hydrogel maintains stable, reproducible resistance changes at 150 % tensile strain. Therefore, the high-performance conductive hydrogel containing ChNCs stabilized LM has promising applications in flexible wearable sensing devices.

20.
Angew Chem Int Ed Engl ; 63(3): e202316835, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38010854

RESUMEN

Compared with Zn2+ storage, non-metallic charge carrier with small hydrated size and light weight shows fast dehydration and diffusion kinetics for Zn-organic batteries. Here we first report NH4 + /H+ co-storage in self-assembled organic superstructures (OSs) by intermolecular interactions of p-benzoquinone (BQ) and 2, 6-diaminoanthraquinone (DQ) polymer through H-bonding and π-π stacking. BQ-DQ OSs exhibit exposed quadruple-active carbonyl motifs and super electron delocalization routes, which are redox-exclusively coupled with high-kinetics NH4 + /H+ but exclude sluggish and rigid Zn2+ ions. A unique 4e- NH4 + /H+ co-coordination mechanism is unravelled, giving BQ-DQ cathode high capacity (299 mAh g-1 at 1 A g-1 ), large-current tolerance (100 A g-1 ) and ultralong life (50,000 cycles). This strategy further boosts the capacity to 358 mAh g-1 by modulating redox-active building units, giving new insights into ultra-fast and stable NH4 + /H+ storage in organic materials for better Zn batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA