Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Chemistry ; 29(25): e202202918, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637457

RESUMEN

A series of transition metal (M)-promoted carbon-silicon (C-M-Si; M=Mn, Fe, Co, Ni, Cu, Zn, Zr) solid acid catalysts with designated molar ratio of M/Si=1 : 8 were fabricated and exploited for acetalization of benzaldehyde (BzH) with ethylene glycol (EG). The physical and chemical properties of these C-M-Si catalysts prepared by sol-gel method were characterized by various techniques, namely, SEM, EDS, TGA-DTG, BET, XRD, FTIR, XPS, and NH3 -TPD. Among various examined acidic C-M-Si catalysts, the C-Fe-Si catalyst exhibited the optimal catalytic activity with the benzaldehyde glycol acetal (BEGA) yield of 97.67 %, in excellent agreement with the value (97.88 %) predicted by the response surface methodology (RSM) based on a Box-Behnken design (BBD). C-Fe-Si catalyst with the high catalytic activities and excellent stability and reusability may be ascribed to the suitable acidity and uniform surface distribution of active sites requisite for the acid-catalyzed acetalization reaction.

2.
ACS Biomater Sci Eng ; 7(12): 5727-5738, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34808042

RESUMEN

The advent of three dimensionally (3D) printed customized bone grafts using different biomaterials has enabled repairs of complex bone defects in various in vivo models. However, studies related to their clinical translations are truly limited. Herein, 3D printed poly(lactic-co-glycolic acid)/ß-tricalcium phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant bone morphogenetic protein -2 (rhBMP-2) coating were utilized to repair primate's large-volume mandibular defects and compared efficacy of prefabricated tissue-engineered bone (PTEB) over direct implantation (without prefabrication). 18F-FDG PET/CT was explored for real-time monitoring of bone regeneration and vascularization. After 3-month's prefabrication, the original 3D-architecture of the PLGA/TCP-BMP scaffold was found to be completely lost, while it was properly maintained in TCP-BMP scaffolds. Besides, there was a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase in TCP-BMP scaffolds density during ectopic (within latissimus dorsi muscle) and orthotopic (within mandibular defect) implantation, indicating regular bone formation with TCP-BMP scaffolds. Notably, PTEB based on TCP-BMP scaffold was successfully fabricated with pronounced effects on bone regeneration and vascularization based on radiographic, 18F-FDG PET/CT, and histological evaluation, suggesting a promising approach toward clinical translation.


Asunto(s)
Reconstrucción Mandibular , Animales , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Tomografía Computarizada por Tomografía de Emisión de Positrones , Primates , Impresión Tridimensional , Andamios del Tejido
3.
J Am Chem Soc ; 143(37): 15440-15452, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34478267

RESUMEN

Neutral ketene is a crucial intermediate during zeolite carbonylation reactions. In this work, the roles of ketene and its derivates (viz., acylium ion and surface acetyl) associated with direct C-C bond coupling during the carbonylation reaction have been theoretically investigated under realistic reaction conditions and further validated by synchrotron radiation X-ray diffraction (SR-XRD) and Fourier transformed infrared (FT-IR) studies. It has been demonstrated that the zeolite confinement effect has significant influence on the formation, stability, and further transformation of ketene. Thus, the evolution and the role of reactive and inhibitive intermediates depend strongly on the framework structure and pore architecture of the zeolite catalysts. Inside side pockets of mordenite (MOR), rapid protonation of ketene occurs to form a metastable acylium ion exclusively, which is favorable toward methyl acetate (MA) and acetic acid (AcOH) formation. By contrast, in 12MR channels of MOR, a relatively longer lifetime was observed for ketene, which tends to accelerate deactivation of zeolite due to coke formation by the dimerization of ketene and further dissociation to diene and alkyne. Thus, we resolve, for the first time, a long-standing debate regarding the genuine role of ketene in zeolite catalysis. It is a paradigm to demonstrate the confinement effect on the formation, fate, and catalytic consequence of the active intermediates in zeolite catalysis.

4.
Nat Protoc ; 15(10): 3527-3555, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32968252

RESUMEN

Solid acid catalysts are used extensively in various advanced chemical and petrochemical processes. Their catalytic performance (namely, activity, selectivity, and reaction pathway) mostly depends on their acid properties, such as type (Brønsted versus Lewis), location, concentration, and strength, as well as the spatial correlations of their acid sites. Among the diverse methods available for acidity characterization, solid-state nuclear magnetic resonance (SSNMR) techniques have been recognized as the most valuable and reliable tool, especially in conjunction with suitable probe molecules that possess observable nuclei with desirable properties. Taking 31P probe molecules as an example, both trimethylphosphine (TMP) and trimethylphosphine oxide (TMPO) adsorb preferentially to the acid sites on solid catalysts and thus are capable of providing qualitative and quantitative information for both Brønsted and Lewis acid sites. This protocol describes procedures for (i) the pretreatment of typical solid acid catalysts, (ii) adoption and adsorption of various 31P probe molecules, (iii) considerations for one- and two-dimensional (1D and 2D, respectively) NMR acquisition, (iv) relevant data analysis and spectral assignment, and (v) methodology for NMR mapping with the assistance of theoretical calculations. Users familiar with SSNMR experiments can complete 31P-1H heteronuclear correlation (HETCOR), 31P-31P proton-driven spin diffusion (PDSD), and double-quantum (DQ) homonuclear correlation with this protocol within 2-3 d, depending on the complexity and the accessible acid sites of the solid acid samples.


Asunto(s)
Ácidos/química , Catálisis , Resonancia Magnética Nuclear Biomolecular/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Fosfinas/química , Protones
5.
Mikrochim Acta ; 186(2): 59, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30617429

RESUMEN

A hydrothermal route is reported for the preparation of a composite consisting of sheet-like glucose-derived carbon and nickel oxide nanoparticles. The nanocomposites were prepared at different annealing temperatures and exploited as electrode materials for amperometric (i-t) determination of hydrazine (N2H4) and hydrogen peroxide (H2O2) at trace levels. The performances of the sensors were assessed by cyclic voltammetry and amperometry detection using a rotating disk electrode (RDE) technique. The modified electrode annealed at ca. 300 °C was found to exhibit the best electrocatalytic performance in terms of sensitive and selective detection of N2H4 and H2O2 even in the presence of interfering species. The electrode is inexpensive, robust, easy to prepare in large batches, highly stable, and has a low overpotential. H2O2 can be sensed, best at a working voltage of typically 0.13 V vs Ag/AgCl; rotationg speed 1200 rpm) over a wide concentration range (0.01 to 3.9 µM) with a detection limit of 1.5 nM. N2H4 can be sensed, best at a working voltage of typically 0.0 V within the concentration range from 0.5 µM to 12 mM with an excellent detection limit of 1.5 µM. Thus, this cost-effective and robust modified electrode, which may be readily prepared in large batch quantity, represents a practical platform for industrial sensing. Graphical abstract Schematic of the hydrothermal method for synthesis of carbon and nickel oxide nanoparticle composites (GCD/NiO-150, GCD/NiO-300, and GCD/NiO-450). The composite was used for the electro-oxidation of hydrazine (N2H4) and hydrogen peroxide (H2O2) by cyclic voltammetry and amperometry (i-t).

6.
J Am Chem Soc ; 140(34): 10764-10774, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30070481

RESUMEN

Post-synthetic dealumination treatment is a common tactic adopted to improve the catalytic performance of industrialized zeolitic catalysts through enhancements in acidity and stability. However, among the possible extra-framework aluminum (EFAL) species in dealuminated zeolites such as Al3+, Al(OH)2+, Al(OH)2+, AlO+, AlOOH, and Al(OH)3, the presence of tri-coordinated EFAL-Al3+ species, which exhibit large quadrupolar effect due to the lack of hydrogen-bonding species, was normally undetectable by conventional one- and two-dimensional 1H and/or 27Al solid-state nuclear magnetic resonance (SSNMR) techniques. By combining density functional theory (DFT) calculations with experimental 31P SSNMR using trimethylphosphine (TMP) as the probe molecule, we report herein a comprehensive study to certify the origin, fine structure, and possible location of tri-coordinated EFAL-Al3+ species in dealuminated HY zeolite. The spatial proximities and synergies between the Brønsted and various Lewis acid sites were clearly identified, and the origin for the observed EFAL-Al3+ species with ultra-strong Lewis acidity was deduced to be at the expense of adjacent Brønsted acid sites. The excellent performance of such tri-coordinated EFAL species was furthermore confirmed by glucose isomerization reactions.

7.
Chem Rev ; 117(19): 12475-12531, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28952317

RESUMEN

Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R3PO). In particular, correlations between the observed 31P chemical shifts (δ31P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH3-TPD), Fourier transformed infrared (FT-IR), and 1H NMR spectroscopies.

8.
ACS Appl Mater Interfaces ; 9(37): 31794-31805, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28850211

RESUMEN

The syntheses of highly stable ruthenium nanoparticles supported on tungsten oxides (Ru-WO3) bifunctional nanocomposites by means of a facial microwave-assisted route are reported. The physicochemical properties of these Ru-WO3 catalysts with varied Ru contents were characterized by a variety of analytical and spectroscopic methods such as XRD, SEM/TEM, EDX, XPS, N2 physisorption, TGA, UV-vis, and FT-IR. The Ru-WO3 nanocomposite catalysts so prepared were utilized for electrocatalytic of hydrazine (N2H4) and catalytic oxidation of diphenyl sulfide (DPS). The Ru-WO3-modified electrodes were found to show extraordinary electrochemical performances for sensitive and selective detection of N2H4 with a desirable wide linear range of 0.7-709.2 µM and a detection limit and sensitivity of 0.3625 µM and 4.357 µA µM-1 cm-2, respectively, surpassing other modified electrodes. The modified GCEs were also found to have desirable selectivity, stability, and reproducibility as N2H4 sensors, even for analyses of real samples. This is ascribed to the well-dispersed metallic Ru NPs on the WO3 support, as revealed by UV-vis and photoluminescence studies. Moreover, these Ru-WO3 bifunctional catalysts were also found to exhibit excellent catalytic activities for oxidation of DPS in the presence of H2O2 oxidant with desirable sulfoxide yields.

9.
J Colloid Interface Sci ; 506: 271-282, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28738278

RESUMEN

Rhenium nanoparticles (ReNPs) supported on ordered mesoporous carbon (OMC) as a catalyst (Re/OMC) through a solvent-evaporation induced self-assembly (ELSA) method were prepared. The synthesized heterogonous catalyst was fully characterized using X-ray diffraction, field emission transmission electron microscopy, N2 sorption, metal dispersion, thermogravimetric analysis, Raman, Fourier-transform infrared, and X-ray photon spectroscopies. In addition, the catalyst was applied to reduce the aromatic nitro compounds (ANCs) for the first time in aqueous media and the reactions were monitored by following the intensity changes in the UV-vis absorption spectra with respect to time. This method provides the advantages of obtaining a high rate constant (k), green reaction conditions, simple methodology, easy separation and easy workup procedures. Moreover, the catalyst can be easily recovered by centrifugation, recycled several times and reused without any loss of activity. The higher activity of this catalyst was attributed to higher dispersion and smaller particle size of ReNPs as observed from FE-TEM and XRD results.

10.
Nanoscale ; 9(19): 6486-6496, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28466933

RESUMEN

Highly stable palladium nanoparticles (Pd NPs) supported on a porous carbon aerogel (Pd/CA) prepared by a facile microwave reduction route is reported. The as-prepared Pd/CA composites were characterized by various techniques, viz. XRD, Raman, SEM-EDX, FE-TEM, BET, and TGA. The Pd NPs were found to disperse uniformly in the porous carbon matrix, which possesses a large surface area (851.8 m2 g-1) and pore volume (3.021 cm3 g-1). The Pd/CA composite was found to possess extraordinary electrocatalytic activity and excellent selectivity for simultaneous detection of dopamine (DA) and melatonin (ML). The Pd/CA-modified electrode exhibited a wide linear response range for electrochemical sensing of DA (0.01-100 µM) and ML (0.02-500 µM) with a detection limit of 0.0026 and 0.0071 µM, respectively. In addition, the electrochemical sensor reported herein was successfully applied for the detection of DA and ML in human serum and urine samples, revealing perspective practical applications.


Asunto(s)
Carbono , Técnicas Electroquímicas , Nanopartículas del Metal , Paladio , Análisis Químico de la Sangre , Dopamina/análisis , Electrodos , Humanos , Melatonina/análisis , Urinálisis
11.
Phys Chem Chem Phys ; 18(24): 16466-75, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27265120

RESUMEN

A one-pot synthesis method for the fabrication of biomass-derived activated carbon-zinc oxide (ZAC) nanocomposites using sugarcane bagasse as a carbon precursor and ZnCl2 as an activating agent is reported. For the first time, we used ZnCl2 as not only an activating agent and also for the synthesis of ZnO nanoparticles on the AC surface. ZAC materials with varying ZnO loading were prepared and characterized by a variety of analytical and spectroscopic techniques such as FE-SEM, FE-TEM, XRD, EA, XPS, and Raman spectroscopy. ZAC-modified glassy carbon electrodes (GCEs) were found to exhibit remarkable electrochemical properties for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) as well as hazardous pollutants such as hydrogen peroxide (H2O2) and hydrazine (N2H4) with desirable sensitivity, selectivity, and detection limits. Moreover, ZAC-modified stainless steel electrodes also showed superior performances for supercapacitor applications. The ZAC nanocomposites, which may be mass produced by the reported facile direct route from sugarcane bagasse, are not only eco-friendly but also cost-effective, and thus, are suitable as a practical platform for bio-sensing and energy storage applications.


Asunto(s)
Técnicas Biosensibles , Carbono/química , Suministros de Energía Eléctrica , Nanocompuestos/química , Óxido de Zinc/química , Ácido Ascórbico/análisis , Celulosa/química , Cloruros/química , Dopamina/análisis , Capacidad Eléctrica , Electrodos , Tecnología Química Verde , Hidrazinas/análisis , Peróxido de Hidrógeno/análisis , Límite de Detección , Tamaño de la Partícula , Porosidad , Saccharum , Ácido Úrico/análisis , Compuestos de Zinc/química , Óxido de Zinc/síntesis química
12.
Sci Rep ; 6: 24128, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27087561

RESUMEN

A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 µA mM(-1 )cm(-2)) and low detection limit (0.18 µM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.


Asunto(s)
Técnicas Biosensibles , Glucosa/análisis , Níquel/química , Compuestos de Tungsteno/química , Técnicas Electroquímicas , Electrodos , Nanopartículas , Compuestos de Tungsteno/síntesis química
13.
Acc Chem Res ; 49(4): 655-63, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26990961

RESUMEN

Solid acid materials with tunable structural and acidic properties are promising heterogeneous catalysts for manipulating and/or emulating the activity and selectivity of industrially important catalytic reactions. On the other hand, the performances of acid-catalyzed reactions are mostly dictated by the acidic features, namely, type (Brønsted vs Lewis acidity), amount, strength, and local environment of acid sites. The latter is relevant to their location (intra- vs extracrystalline), and possible confinement and Brønsted-Lewis acid synergy effects that may strongly affect the host-guest interactions, reaction mechanism, and shape selectivity of the catalytic system. This account aims to highlight some important applications of state-of-the-art solid-state NMR (SSNMR) techniques for exploring the structural and acidic properties of solid acid catalysts as well as their catalytic performances and relevant reaction pathway invoked. In addition, density functional theory (DFT) calculations may be exploited in conjunction with experimental SSNMR studies to verify the structure-activity correlations of the catalytic system at a microscopic scale. We describe in this Account the developments and applications of advanced ex situ and/or in situ SSNMR techniques, such as two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) homonuclear correlation spectroscopy for structural investigation of solid acids as well as study of their acidic properties. Moreover, the energies and electronic structures of the catalysts and detailed catalytic reaction processes, including the identification of reaction species, elucidation of reaction mechanism, and verification of structure-activity correlations, made available by DFT theoretical calculations were also discussed. Relevant discussions will focus primarily on results obtained from our laboratories in the past decade, including (i) quantitative and qualitative acidity characterization utilizing assorted probe molecules, (ii) probing the spatial proximity and synergy effect of acid sites, and (iii) influence of acid features and pore confinement effect on catalytic activity, transition-state stability, reaction pathway, and product selectivity of solid acid catalysts such as zeolites, metal oxides, and heteropolyacids. It is conclusive that a synergy of acidity (local effect) and pore confinement (environmental effect) tend to strongly dictate the formations of intermediates and transition states, hence, the reaction pathways and catalytic performance of solid acid catalysts. We hope that these information can provide additional insights toward our understanding in heterogeneous catalysis, especially the roles of structural and acidic properties on catalytic performances and reaction mechanism of acid-catalyzed systems, which should be beneficial for rational design of solid acid catalysts.

14.
Sci Rep ; 6: 19949, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26818461

RESUMEN

The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2-3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600-900 (o)C) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 (o)C was found to possess a high specific surface area (2522 m(2) g(-1)) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0-1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g(-1) at a current density of 1 A g(-1) in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

15.
ACS Appl Mater Interfaces ; 8(2): 1319-26, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26700093

RESUMEN

A facile method has been developed for fabricating selective and sensitive electrochemical sensors for the detection of toxic metal ions, which invokes incorporation of palladium nanoparticles (Pd NPs) on porous activated carbons (PACs). The PACs, which were derived from waste biomass feedstock (fruit peels), possess desirable textural properties and porosities favorable for dispersion of Pd NPs (ca. 3-4 nm) on the graphitic PAC substrate. The Pd/PAC composite materials so fabricated were characterized by a variety of different techniques, such as X-ray diffraction, field-emission transmission electron microscopy, gas physisorption/chemisorption, thermogravimetric analysis, and Raman, Fourier-transform infrared, and X-ray photon spectroscopies. The Pd/PAC-modified glassy carbon electrodes (GCEs) were exploited as electrochemical sensors for the detection of toxic heavy metal ions, viz., Cd(2+), Pb(2+), Cu(2+), and Hg(2+), which showed superior performances for both individual as well as simultaneous detections. For simultaneous detection of Cd(2+), Pb(2+), Cu(2+), and Hg(2+), a linear response in the ion concentration range of 0.5-5.5, 0.5-8.9, 0.5-5.0, and 0.24-7.5 µM, with sensitivity of 66.7, 53.8, 41.1, and 50.3 µA µM(-1) cm(-2), and detection limit of 41, 50, 66, and 54 nM, respectively, was observed. Moreover, the Pd/PAC-modified GCEs also show perspective applications in detection of metal ions in real samples, as illustrated in this study for a milk sample.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanopartículas del Metal/química , Metales/aislamiento & purificación , Carbono/química , Metales/toxicidad , Paladio/química
16.
ACS Appl Mater Interfaces ; 7(44): 24810-21, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26479076

RESUMEN

High surface area carbon porous materials (CPMs) synthesized by the direct template method via self-assembly of polymerized phloroglucinol-formaldehyde resol around a triblock copolymer template were used as supports for nickel nanoparticles (Ni NPs). The Ni/CPM materials fabricated through a microwave-assisted heating procedure have been characterized by various analytical and spectroscopic techniques, such as X-ray diffraction, field emission transmission electron microscopy, vibrating sample magnetometry, gas physisorption/chemisorption, thermogravimetric analysis, and Raman, Fourier-transform infrared, and X-ray photon spectroscopies. Results obtained from ultraviolet-visible (UV-vis) spectroscopy demonstrated that the supported Ni/CPM catalysts exhibit superior activity for catalytic reduction of organic dyes, such as methylene blue (MB) and rhodamine B (RhB). Further electrochemical measurements by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) also revealed that the Ni/CPM-modified electrodes showed excellent sensitivity (59.6 µA µM(-1) cm(-2)) and a relatively low detection limit (2.1 nM) toward the detection of Hg(II) ion. The system has also been successfully applied for the detection of mercuric ion in real sea fish samples. The Ni/CPM nanocomposite represents a robust, user-friendly, and highly effective system with prospective practical applications for catalytic reduction of organic dyes as well as trace level detection of heavy metals.

17.
Chemistry ; 21(22): 8200-6, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25882793

RESUMEN

High-surface-area, guava-leaf-derived, heteroatom-containing activated carbon (GHAC) materials were synthesized by means of a facile chemical activation method with KOH as activating agent and exploited as catalyst supports to disperse nickel oxide (NiO) nanocrystals (average size (2.0±0.1) nm) through a hydrothermal process. The textural and structural properties of these GHAC/NiO nanocomposites were characterized by various physicochemical techniques, namely, field-emission SEM, high-resolution TEM, elemental analysis, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The as-synthesized GHAC/NiO nanocomposites were employed as binder-free electrodes, which exhibited high specific capacitance (up to 461 F g(-1) at a current density of 2.3 A g(-1)) and remarkable cycling stability, which may be attributed to the unique properties of GHAC and excellent electrochemical activity of the highly dispersed NiO nanocrystals.

18.
Analyst ; 139(19): 4994-5000, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25101356

RESUMEN

Carbon porous materials (CPMs) with high surface areas up to 2660 m(2) g(-1), directly fabricated by a facile microwave-assisted route, were applied to the electrochemical detection of dopamine (DA). The CPM-modified electrodes exhibited excellent selectivity, a desirable detection limit (2.9 nM), and extraordinary sensitivity (2.56 mA µM(-1) cm(-2)) for detection of DA, even in the presence of large amounts of foreign species, such as ascorbic acid (AA) and uric acid (UA), making feasible the practical applications of these electrodes as DA sensors.


Asunto(s)
Carbono/química , Dopamina/análisis , Técnicas Electroquímicas , Ácido Ascórbico/química , Electrodos , Microondas , Oxidación-Reducción , Porosidad , Ácido Úrico/química
19.
J Phys Chem Lett ; 5(18): 3183-7, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26276330

RESUMEN

Interactions between amines and carbon dioxide (CO2) are essential to amine-functionalized solid adsorbents for carbon capture, and an in-depth knowledge of these interactions is crucial to adsorbent design and fabrication as well as adsorption/desorption processes. The local structures of CO2 adsorbed on a tetraethylenepentamine-impregnated mesoporous silica SBA-15 were investigated by solid-state (13)C{(14)N} S-RESPDOR MAS NMR technique and theoretical DFT calculations. Two types of adsorption species, namely, secondary and tertiary carbamates as well as distant ammonium groups were identified together with their relative concentrations and relevant (14)N quadrupolar parameters. Moreover, a dipolar coupling of 716 Hz was derived, corresponding to a (13)C-(14)N internuclear distance of 1.45 Å. These experimental data are in excellent agreement with results obtained from DFT calculations, revealing that the distribution of surface primary and secondary amines readily dictates the CO2 adsorption/desorption properties of the adsorbent.

20.
Solid State Nucl Magn Reson ; 55-56: 12-27, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24094848

RESUMEN

Characterization of the surface acidic properties of solid acid catalysts is a key issue in heterogeneous catalysis. Important acid features of solid acids, such as their type (Brønsted vs. Lewis acid), distribution and accessibility (internal vs. external sites), concentration (amount), and strength of acid sites are crucial factors dictating their reactivity and selectivity. This short review provides information on different solid-state NMR techniques used for acidity characterization of solid acid catalysts. In particular, different approaches using probe molecules containing a specific nucleus of interest, such as pyridine-d5, 2-(13)C-acetone, trimethylphosphine, and trimethylphosphine oxide, are compared. Incorporation of valuable information (such as the adsorption structure, deprotonation energy, and NMR parameters) from density functional theory (DFT) calculations can yield explicit correlations between the chemical shift of adsorbed probe molecules and the intrinsic acid strength of solid acids. Methods that combine experimental NMR data with DFT calculations can therefore provide both qualitative and quantitative information on acid sites.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Ácidos/química , Catálisis , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA