RESUMEN
INTRODUCTION: Invasive species pose a major threat to global biodiversity and agricultural productivity, yet the genomic mechanisms driving their rapid expansion into new habitats are not fully understood. The fall armyworm, Spodoptera frugiperda, originally from the Americas, has expanded its reach across the Old World, causing substantial reduction in crop yield. Although the hybridization between two genetically distinct strains has been well-documented, the role of such hybridization in enhancing the species' invasive capabilities remains largely unexplored. OBJECTIVES: This study aims to investigate the contributions of hybridization and natural selection to the rapid invasion of the fall armyworm. METHODS: We analyzed the whole-genome resequencing data from 432 individuals spanning its global distribution. We identified the genomic signatures of selection associated with invasion and explored their linkage with the Tpi gene indicating strain differentiation. Furthermore, we detected signatures of balancing selection in native populations for candidate genes that underwent selective sweeps during the invasion process. RESULTS: Our analysis revealed pronounced genomic differentiation between native and invasive populations. Invasive populations displayed a uniform genomic structure distinctly different from that of native populations, indicating hybridization between the strains during invasion. This hybridization likely contributes to maintaining high genetic diversity in invasive regions, which is crucial for survival and adaptation. Additionally, polymorphisms on genes under selection during invasion were possibly preserved through balancing selection in their native environments. CONCLUSION: Our findings reveal the genomic basis of the fall armyworm's successful invasion and rapid adaptation to new environments, highlighting the important role of hybridization in the dynamics of invasive species.
RESUMEN
Invasive species cause massive economic and ecological damage. Climate change has resulted in an unprecedented increase in the number and impact of invasive species; however, the mechanisms underlying these invasions are unclear. The sycamore lace bug, Corythucha ciliata, is a highly invasive species originating from North America and has expanded across the Northern Hemisphere since the 1960s. In this study, we assembled the C. ciliata genome using high-coverage Pacific Biosciences (PacBio), Illumina, and high-throughput chromosome conformation capture (Hi-C) sequencing. A total of 15,278 protein-coding genes were identified, and expansions of gene families with oxidoreductase and metabolic activities were observed. In-depth resequencing of 402 samples from native and nine invaded countries across three continents revealed 2.74 million single nucleotide polymorphisms. Two major invasion routes of C. ciliata were identified from North America to Europe and Japan, with a contact zone forming in East Asia. Genomic signatures of selection associated with invasion and long-term balancing selection in native ranges were identified. These genomic signatures overlapped with expanded genes, suggesting improvements in the oxidative stress and thermal tolerance of C. ciliata. These findings offer valuable insights into the genomic architecture and adaptive evolution underlying the invasive capabilities of species during rapid environmental changes.
RESUMEN
The extinction risk of the giant panda has been demoted from "endangered" to "vulnerable" on the International Union for Conservation of Nature Red List, but its habitat is more fragmented than ever before, resulting in 33 isolated giant panda populations according to the fourth national survey released by the Chinese government. Further comprehensive investigations of the genetic background and in-depth assessments of the conservation status of wild populations are still necessary and urgently needed. Here, we sequenced the genomes of 612 giant pandas with an average depth of ~26× and generated a high-resolution map of genomic variation with more than 20 million variants covering wild individuals from six mountain ranges and captive representatives in China. We identified distinct genetic clusters within the Minshan population by performing a fine-grained genetic structure. The estimation of inbreeding and genetic load associated with historical population dynamics suggested that future conservation efforts should pay special attention to the Qinling and Liangshan populations. Releasing captive individuals with a genetic background similar to the recipient population appears to be an advantageous genetic rescue strategy for recovering the wild giant panda populations, as this approach introduces fewer deleterious mutations into the wild population than mating with differentiated lineages. These findings emphasize the superiority of large-scale population genomics to provide precise guidelines for future conservation of the giant panda.
Asunto(s)
Conservación de los Recursos Naturales , Genoma , Ursidae , Ursidae/genética , Animales , Conservación de los Recursos Naturales/métodos , Genoma/genética , China , Especies en Peligro de Extinción , Variación Genética , Genética de Población/métodos , Dinámica Poblacional , Secuenciación Completa del Genoma/métodosRESUMEN
African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called 'Kingdon's Line'. However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation, and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.
RESUMEN
Caddisflies (Trichoptera) are among the most diverse groups of freshwater animals with more than 16 000 described species. They play a fundamental role in freshwater ecology and environmental engineering in streams, rivers and lakes. Because of this, they are frequently used as indicator organisms in biomonitoring programmes. Despite their importance, key questions concerning the evolutionary history of caddisflies, such as the timing and origin of larval case making, remain unanswered owing to the lack of a well-resolved phylogeny. Here, we estimated a phylogenetic tree using a combination of transcriptomes and targeted enrichment data for 207 species, representing 48 of 52 extant families and 174 genera. We calibrated and dated the tree with 33 carefully selected fossils. The first caddisflies originated approximately 295 million years ago in the Permian, and major suborders began to diversify in the Triassic. Furthermore, we show that portable case making evolved in three separate lineages, and shifts in diversification occurred in concert with key evolutionary innovations beyond case making.
Asunto(s)
Insectos , Filogenia , Insectos/clasificación , Insectos/genética , Insectos/fisiología , Agua Dulce , Transcriptoma , Biodiversidad , Fósiles , Evolución Biológica , AnimalesRESUMEN
Assigning a query individual animal or plant to its derived population is a prime task in diverse applications related to organismal genealogy. Such endeavors have conventionally relied on short DNA sequences under a phylogenetic framework. These methods naturally show constraints when the inferred population sources are ambiguously phylogenetically structured, a scenario demanding substantially more informative genetic signals. Recent advances in cost-effective production of whole-genome sequences and artificial intelligence have created an unprecedented opportunity to trace the population origin for essentially any given individual, as long as the genome reference data are comprehensive and standardized. Here, we developed a convolutional neural network method to identify population origins using genomic SNPs. Three empirical datasets (an Asian honeybee, a red fire ant, and a chicken datasets) and two simulated populations are used for the proof of concepts. The performance tests indicate that our method can accurately identify the genealogy origin of query individuals, with success rates ranging from 93 % to 100 %. We further showed that the accuracy of the model can be significantly increased by refining the informative sites through FST filtering. Our method is robust to configurations related to batch sizes and epochs, whereas model learning benefits from the setting of a proper preset learning rate. Moreover, we explained the importance score of key sites for algorithm interpretability and credibility, which has been largely ignored. We anticipate that by coupling genomics and deep learning, our method will see broad potential in conservation and management applications that involve natural resources, invasive pests and weeds, and illegal trades of wildlife products.
Asunto(s)
Aprendizaje Profundo , Animales , Abejas/genética , Abejas/clasificación , Hormigas/genética , Hormigas/clasificación , Genética de Población , Pollos/genética , Pollos/clasificación , Polimorfismo de Nucleótido Simple , Genómica , FilogeniaRESUMEN
Müllerian mimicry was proposed to be an example of a coevolved mutualism promoted by population isolation in glacial refugia. This, however, has not been well supported in butterfly models. Here, we use genomic data to test this theory while examining the population genetics behind mimetic diversification in a pair of co-mimetic bumble bees, Bombus breviceps Smith and Bombus trifasciatus Smith. In both lineages, populations were structured by geography but not as much by color pattern, suggesting sharing of color alleles across regions of restricted gene flow and formation of mimicry complexes in the absence of genetic differentiation. Demographic analyses showed mismatches between historical effective population size changes and glacial cycles, and niche modeling revealed only mild habitat retraction during glaciation. Moreover, mimetic subpopulations of the same color form in the two lineages only in some cases exhibit similar population history and genetic divergence. Therefore, the current study supports a more complex history in this comimicry than a simple refugium-coevolution model.
Asunto(s)
Mimetismo Biológico , Animales , Abejas/genética , Abejas/fisiología , Mimetismo Biológico/genética , Refugio de Fauna , Evolución Biológica , Flujo Génico , Genética de Población , Filogenia , Ecosistema , Coevolución Biológica , Variación GenéticaRESUMEN
The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here, we describe an upgraded genome polishing tool - NextPolish2, which can fix base errors remaining in those "highly accurate" genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.
Asunto(s)
Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Humanos , Genómica/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Genoma/genéticaRESUMEN
T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ácido Peroxinitroso , Linfocitos T Reguladores , Ácido Peroxinitroso/metabolismo , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/inmunología , Ratones , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Receptores de Interleucina-2/metabolismo , Femenino , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Células Th17/inmunología , Células Th17/metabolismo , Masculino , Tirosina/análogos & derivados , Tirosina/metabolismoRESUMEN
Elucidating the evolutionary processes that drive population divergence can enhance our understanding of the early stages of speciation and inform conservation management decisions. The honeybee Apis cerana displays extensive population divergence, providing an informative natural system for exploring these processes. The mainland lineage A. cerana includes several peripheral subspecies with disparate ecological and geographical settings radiated from a central ancestor. Under this evolutionary framework, we can explore the patterns of genome differentiation and the evolutionary models that explain them. We can also elucidate the contribution of non-genomic spatiotemporal mechanisms (extrinsic features) and genomic mechanisms (intrinsic features) that influence these genomic differentiation landscapes. Based on 293 whole genomes, a small part of the genome is highly differentiated between central-peripheral subspecies pairs, while low and partial parallelism partly reflects idiosyncratic responses to environmental differences. Combined elements of recurrent selection and speciation-with-gene-flow models generate the heterogeneous genome landscapes. These elements weight differently between central-island and other central-peripheral subspecies pairs, influenced by glacial cycles superimposed on different geomorphologies. Although local recombination rates exert a significant influence on patterns of genomic differentiation, it is unlikely that low-recombination rates regions were generated by structural variation. In conclusion, complex factors including geographical isolation, divergent ecological selection and non-uniform genome features have acted concertedly in the evolution of reproductive barriers that could reduce gene flow in part of the genome and facilitate the persistence of distinct populations within mainland lineage of A. cerana.
Asunto(s)
Flujo Génico , Genética de Población , Abejas/genética , Abejas/clasificación , Animales , Especiación Genética , Geografía , Selección Genética , Variación Genética , GenómicaAsunto(s)
Panthera , Tigres , Animales , Panthera/genética , Tigres/genética , Haplotipos , Genoma , Cromosomas/genéticaRESUMEN
Atopic dermatitis (AD) is a relapsing inflammatory skin condition that has become a global health issue with complex etiology and mounting prevalence. The association of AD with skin and gut microbiota has been revealed by virtue of the continuous development of sequencing technology and genomics analysis. Also, the gut-brain-skin axis and its mutual crosstalk mechanisms have been gradually verified. Accordingly, the microbiota-skin-gut axis also plays an important role in allergic skin inflammation. Herein, we reviewed the relationship between the microbiota-skin-gut axis and AD, explored the underlying signaling molecules and potential pathways, and focused on the potential mechanisms of probiotics, antimicrobial peptides (AMPs), coagulase-negative staphylococci transplantation, fecal microbiota transplantation, AMPs, and addition of essential fatty acids in alleviating AD, with the aim to provide a new perspective for targeting microbiota in the treatment of allergic skin inflammation.
RESUMEN
Constructing a phosphor with multifunctional applications is an imperative challenge. Especially, highly thermostable luminescence of phosphor is indispensable for stable white-light-emitting diodes (LEDs). Nevertheless, good thermal quenching resistance behavior is unfavorable for a fluorescence intensity ratio (FIR)-based optical temperature sensor. Herein, a highly thermostable Ba3(ZnB5O10)PO4 (BZBP)-based phosphor is successfully achieved via replacing Ba2+ with Dy3+, demonstrating simultaneously promising lighting and thermometry utilizations. Under the excitation of 350 nm, the title phosphor only loses 12% of the initial intensity when the temperature is up to 473 K, ensuring sufficient luminescence thermostability for white-LED lighting. The white-LED device fabricated using the title phosphor emits high-quality white light with a high color rendering index (Ra = 93) and low correlated color temperature (CCT = 3996 K). Meanwhile, the yellow and blue emission intensities demonstrate a downtrend difference with rising temperature. Temperature sensing properties are assessed through FIR technology. The maximal relative sensitivity reaches as high as 0.0379 K-1 at 298 K. These results reveal that the title phosphor has a great potential for indoor lighting and thermometry applications.
RESUMEN
BACKGROUND: Lice (Psocodea: Phthiraptera) are one important group of parasites that infects birds and mammals. It is believed that the ancestor of parasitic lice originated on the ancient avian host, and ancient mammals acquired these parasites via host-switching from birds. Here we present the first chromosome-level genome of Menopon gallinae in Amblycera (earliest diverging lineage of parasitic lice). We explore the transition of louse host-switching from birds to mammals at the genomic level by identifying numerous idiosyncratic genomic variations. RESULTS: The assembled genome is 155 Mb in length, with a contig N50 of 27.42 Mb. Hi-C scaffolding assigned 97% of the bases to 5 chromosomes. The genome of M. gallinae retains a basal insect repertoire of 11,950 protein-coding genes. By comparing the genomes of lice to those of multiple representative insects in other orders, we discovered that gene families of digestion, detoxification, and immunity-related are generally conserved between bird lice and mammal lice, while mammal lice have undergone a significant reduction in genes related to chemosensory systems and temperature. This suggests that mammal lice have lost some of these genes through the adaption to environment and temperatures after host-switching. Furthermore, 7 genes related to hematophagy were positively selected in mammal lice, suggesting their involvement in the hematophagous behavior. CONCLUSIONS: Our high-quality genome of M. gallinae provides a valuable resource for comparative genomic research in Phthiraptera and facilitates further studies on adaptive evolution of host-switching within parasitic lice.
Asunto(s)
Amblycera , Parásitos , Animales , Aves de Corral , Cromosomas , MamíferosRESUMEN
Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.
Asunto(s)
Áfidos , Avispas , Humanos , Animales , Avispas/genética , China , Selección Genética , Áfidos/genética , Variación Genética , Interacciones Huésped-ParásitosRESUMEN
Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.
Asunto(s)
Metagenómica , Resiliencia Psicológica , Humanos , Animales , Recién Nacido , Evolución Biológica , Genómica , Rumiantes/genética , Variación Genética/genéticaRESUMEN
Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.
Asunto(s)
Mimetismo Biológico , Estudio de Asociación del Genoma Completo , Abejas/genética , Animales , Fenotipo , Mimetismo Biológico/genética , Edición Génica , ADN Intergénico/genéticaRESUMEN
The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.
Asunto(s)
Ritmo Circadiano , Rumiantes , Termogénesis , Animales , Tejido Adiposo Pardo/metabolismo , Cabras , Reno/genética , Rumiantes/genética , Termogénesis/genética , Regiones ÁrticasRESUMEN
Bean flower thrips Megalurothrips usitatus is a staple pest of cowpea and other legumes and causes dramatic economic losses. Its small size allows for easy concealment, and large reproductive capacity easily leads to infestations. Despite the importance of a genome in developing novel management strategies, genetic studies on M. usitatus remain limited. Thus, we generated a chromosome-level M. usitatus genome using a combination of PacBio long read and Hi-C technologies. The assembled genome was 238.14 Mb with a scaffold N50 of 13.85 Mb. The final genome was anchored into 16 pseudo-chromosomes containing 14,000 genes, of which 91.74% were functionally annotated. Comparative genomic analyses revealed that expanded gene families were enriched in fatty acid metabolism and detoxification metabolism (ABC transporters), and contracted gene families were strongly associated with chitin-based cuticle development and sensory perception of taste. In conclusion, this high-quality genome provides an invaluable resource for us to understand the thrips' ecology and genetics, contributing to pest management.
Asunto(s)
Cromosomas de Insectos , Genoma de los Insectos , Thysanoptera , Animales , Flores , Filogenia , Thysanoptera/genética , VignaRESUMEN
Despite the urgent need for conservation consideration, strategic action plans for the preservation of the Asian honeybee, Apis cerana Fabricius, 1793, remain lacking. Both the convergent and divergent adaptations of this widespread insect have led to confusing phenotypical traits and inconsistent infraspecific taxonomy. Unclear subspecies boundaries pose a significant challenge to honeybee conservation efforts, as it is difficult to effectively prioritize conservation targets without a clear understanding of subspecies identities. Here, we investigated genome variations in 362 worker bees representing almost all populations of mainland A. cerana to understand how evolution has shaped its population structure. Whole-genome single nucleotide polymorphisms (SNPs) based on nuclear sequences revealed eight putative subspecies, with all seven peripheral subspecies exhibiting mutually exclusive monophyly and distinct genetic divergence from the widespread central subspecies. Our results demonstrated that most classic morphological traits, including body size, were related to the climatic variables of the local habitats and did not reflect the true evolutionary history of the organism. Thus, such morphological traits were not suitable for subspecific delineation. Conversely, wing vein characters showed relative independence to the environment and supported the subspecies boundaries inferred from nuclear genomes. Mitochondrial phylogeny further indicated that the present subspecies structure was a result of multiple waves of population divergence from a common ancestor. Based on our findings, we propose that criteria for subspecies delineation should be based on evolutionary independence, trait distinction, and geographic isolation. We formally defined and described eight subspecies of mainland A. cerana. Elucidation of the evolutionary history and subspecies boundaries enables a customized conservation strategy for both widespread and endemic honeybee conservation units, guiding colony introduction and breeding.