Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Hereditas ; 161(1): 32, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350187

RESUMEN

BACKGROUND: The most common progressive form of non-alcoholic fatty liver disease (NAFLD) is non-alcoholic steatohepatitis (NASH), which is characterized by the development of cirrhosis, and requires liver transplantation. We screened for the differentially expressed necroptosis-related genes in NASH in this study, and analyzed immune infiltration through microarray and bioinformatics analysis to identify potential biomarkers, and explore the molecular mechanisms involved in NASH. METHODS: The GSE24807 microarray dataset of NASH patients and healthy controls was downloaded, and we identified the differentially expressed genes (DEGs). Necroptosis-related differential genes (NRDEGs) were extracted from these DEGs, and functionally annotated by enrichment analyses. The core genes were obtained by constructing gene co-expression networks using weighted gene co-expression network analysis (WGCNA). Finally, the transcription factor (TF) regulatory network and the mRNA-miRNA network were constructed, and the infiltrating immune cell populations were analyzed with CIBERSORT. RESULTS: We identified six necroptosis-related genes (CASP1, GLUL, PYCARD, IL33, SHARPIN, and IRF9), and they are potential diagnostic biomarkers for NASH. In particular, PYCARD is a potential biomarker for NAFLD progression. Analyses of immune infiltration showed that M2 macrophages, γδ T cells, and T follicular helper cells were associated with the immune microenvironment of NASH, which is possibly regulated by CASP1, IL33, and IRF9. CONCLUSIONS: We identified six necroptosis-related genes in NASH, which are also potential diagnostic biomarkers. Our study provides new insights into the molecular mechanisms and immune microenvironment of NASH.


Asunto(s)
Redes Reguladoras de Genes , Necroptosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Necroptosis/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Biomarcadores
2.
Front Plant Sci ; 15: 1419719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239192

RESUMEN

Actin depolymerizing factors (ADFs), as the important actin-binding proteins (ABPs) with depolymerizing/severing actin filaments, play a critical role in plant growth and development, and in response to biotic and abiotic stresses. However, the information and function of the ADF family in melon remains unclear. In this study, 9 melon ADF genes (CmADFs) were identified, distributed in 4 subfamilies, and located on 6 chromosomes respectively. Promoter analysis revealed that the CmADFs contained a large number of cis-acting elements related to hormones and stresses. The similarity of CmADFs with their Arabidopsis homologue AtADFs in sequence, structure, important sites and tissue expression confirmed that ADFs were conserved. Gene expression analysis showed that CmADFs responded to low and high temperature stresses, as well as ABA and SA signals. In particular, CmADF1 was significantly up-regulated under above all stress and hormone treatments, indicating that CmADF1 plays a key role in stress and hormone signaling responses, so CmADF1 was selected to further study the mechanism in plant tolerance low temperature. Under low temperature, virus-induced gene silencing (VIGS) of CmADF1 in oriental melon plants showed increased sensitivity to low temperature stress. Consistently, the stable genetic overexpression of CmADF1 in Arabidopsis improved their low temperature tolerance, possibly due to the role of CmADF1 in the depolymerization of actin filaments. Overall, our findings indicated that CmADF genes, especially CmADF1, function in response to abiotic stresses in melon.

3.
Chem Commun (Camb) ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319436

RESUMEN

An example of palladium/norbornene-catalyzed C-H/N-H cycloaddition of carbazoles with 2-bromobenzoic acids is presented, in which a collection of important carbazoles is expeditiously obtained. Derivatives, including acyl halides, α-oxocarboxylic acids, anhydrides, and even amides, are all allowed. Preliminary mechanistic studies reveal that a rare six-membered spiropalladacycle is involved.

4.
Cancer Commun (Lond) ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221992

RESUMEN

BACKGROUND: In the era of immunotherapy, neoadjuvant immunochemotherapy (NAIC) for the treatment of locally advanced esophageal squamous cell carcinoma (ESCC) is used clinically but lacks of high-level clinical evidence. This study aimed to compare the safety and long-term efficacy of NAIC followed by minimally invasive esophagectomy (MIE) with those of neoadjuvant chemotherapy (NAC) followed by MIE. METHODS: A prospective, single-center, open-label, randomized phase III clinical trial was conducted at Henan Cancer Hospital, Zhengzhou, China. Patients were randomly assigned to receive either neoadjuvant toripalimab (240 mg) plus paclitaxel (175 mg/m2) + cisplatin (75 mg/m2) (toripalimab group) or paclitaxel + cisplatin alone (chemotherapy group) every 3 weeks for 2 cycles. After surgery, the toripalimab group received toripalimab (240 mg every 3 weeks for up to 6 months). The primary endpoint was event-free survival (EFS). The pathological complete response (pCR) and overall survival (OS) were key secondary endpoints. Adverse events (AEs) and quality of life were also assessed. RESULTS: Between May 15, 2020 and August 13, 2021, 252 ESCC patients ranging from T1N1-3M0 to T2-3N0-3M0 were enrolled for interim analysis, with 127 in the toripalimab group and 125 in the chemotherapy group. The 1-year EFS rate was 77.9% in the toripalimab group compared to 64.3% in the chemotherapy group (hazard ratio [HR] = 0.62; 95% confidence interval [CI] = 0.39 to 1.00; P = 0.05). The 1-year OS rates were 94.1% and 83.0% in the toripalimab and chemotherapy groups, respectively (HR = 0.48; 95% CI = 0.24 to 0.97; P = 0.037). The patients in the toripalimab group had a higher pCR rate (18.6% vs. 4.6%; P = 0.001). The rates of postoperative Clavien-Dindo grade IIIb or higher morbidity were 9.8% in the toripalimab group and 6.8% in the chemotherapy group, with no significant difference observed (P = 0.460). The rates of grade 3 or 4 treatment-related AEs did not differ between the two groups (12.5% versus 12.4%). CONCLUSIONS: The interim results of this ongoing trial showed that in resectable ESCC, the addition of perioperative toripalimab to NAC is safe, may improve OS and might change the standard treatment in the future.

5.
Gene Ther ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306629

RESUMEN

Gallbladder cancer (GBC) is highly aggressive and has poor prognosis, with most patients only diagnosed at an advanced stage. Furthermore, treatment options are limited, and their effect is unsatisfactory. Bromodomain-containing protein (BRD) is an epigenetic regulator that plays a carcinogenic role in several tumors, including squamous cell lung cancer, acute myeloid leukemia, synovial sarcoma, and malignant rhabdomyosarcoma. However, the expression, biological function, and molecular mechanisms of action of BRD9 in GBC are still unknown. Kaplan-Meier analysis, qRT-PCR, and analysis of clinical features were used to assess the clinical significance of BRD9 in GBC. Cell Counting Kit-8 and colony formation assays were performed to determine the effects of BRD9 on cell growth. The functional role of BRD9 in GBC was explored using qRT-PCR, western blotting, siRNA, and CHIP-qPCR. mRNA sequencing was performed to explore the underlying mechanisms of BRD9, and a nude mouse model of GBC was established to explore the anti-tumor effects of the BRD9 inhibitor I-BRD9 in vivo. BRD9 expression was elevated in GBC tissues compared with adjacent non-tumor tissues, and high BRD9 expression was associated with poor prognosis in patients with GBC. BRD9 knockdown by siRNA significantly decreased cell growth. Targeting BRD9 with I-BRD9 inhibited the proliferation of GBC cells without significant toxic effects. Additionally, I-BRD9 treatment suppressed CST1 expression in GBC cell lines, thereby inhibiting the PI3K-AKT pathway. The transcription factor FOXP1 was found to interact with BRD9 to regulate CST1 expression. Collectively, these results suggest that BRD9 may be a promising biomarker and therapeutic target for GBC.

6.
Adv Sci (Weinh) ; : e2406633, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116343

RESUMEN

Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system, with poor response to current treatments. Abnormal alternative splicing has been associated with the development of a variety of tumors. Combining the GEO database and GBC mRNA-seq analysis, it is found high expression of the splicing factor polypyrimidine region- binding protein 3 (PTBP3) in GBC. Multi-omics analysis revealed that PTBP3 promoted exon skipping of interleukin-18 (IL-18), resulting in the expression of ΔIL-18, an isoform specifically expressed in tumors. That ΔIL-18 promotes GBC immune escape by down-regulating FBXO38 transcription levels in CD8+T cells to reduce PD-1 ubiquitin-mediated degradation is revealed. Using a HuPBMC mouse model, the role of PTBP3 and ΔIL-18 in promoting GBC growth is confirmed, and showed that an antisense oligonucleotide that blocked ΔIL-18 production displayed anti-tumor activity. Furthermore, that the H3K36me3 promotes exon skipping of IL-18 by recruiting PTBP3 via MRG15 is demonstrated, thereby coupling the processes of IL-18 transcription and alternative splicing. Interestingly, it is also found that the H3K36 methyltransferase SETD2 binds to hnRNPL, thereby interfering with PTBP3 binding to IL-18 pre-mRNA. Overall, this study provides new insights into how aberrant alternative splicing mechanisms affect immune escape, and provides potential new perspectives for improving GBC immunotherapy.

7.
Cancer Control ; 31: 10732748241271682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105433

RESUMEN

BACKGROUND: The effect of neoadjuvant chemotherapy (NACT) in gallbladder cancer (GBC) patients remains controversial. The aim of this study was to assess the impact of NACT on overall survival (OS) and cancer specific survival (CSS) in patients with localized or locoregionally advanced GBC, and to explore possible protective predictors for prognosis. METHODS: Data for patients with localized or locoregionally advanced GBC (i.e., categories cTx-cT4, cN0-2, and cM0) from 2004 to 2020 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Patients in the NACT and non-NACT groups were propensity score matched (PSM) 1:3, and the Kaplan-Meier method and log-rank test were performed to analyze the impact of NACT on OS and CSS. Univariable and multivariable Cox regression models were applied to identify the possible prognostic factors. Subgroup analysis was conducted to identify patients who would benefit from NACT. RESULTS: Of the 2676 cases included, 78 NACT and 234 non-NACT patients remained after PSM. In localized or locoregionally advanced GBC patients, the median OS of the NACT and non-NACT was 31 and 16 months (log-rank P < 0.01), and the median CSS of NACT and non-NACT was 32 and 17 months (log-rank P < 0.01), respectively. Longer median OS (31 vs 17 months, log-rank P < 0.01) and CSS (32 vs 20 months, log-rank P < 0.01) was associated with NACT compared with surgery alone. Multivariable Cox regression analysis showed that NACT, stage, and surgery type were prognostic factors for OS and CSS in GBC patients. Subgroup analysis revealed that the survival hazard ratios (HRs) of NACT vs non-NACT for localized or locoregionally advanced GBC patients were significant in most subgroups. CONCLUSIONS: NACT may provide therapeutic benefits for localized or locoregionally advanced GBC patients, especially for those with advanced stage, node-positive, poorly differentiated or undifferentiated disease. NACT combined with radical surgery was associated with a survival advantage. Therefore, NACT combined with surgery may provide a better treatment option for resectable GBC patients.


Asunto(s)
Neoplasias de la Vesícula Biliar , Terapia Neoadyuvante , Puntaje de Propensión , Programa de VERF , Humanos , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/mortalidad , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Neoplasias de la Vesícula Biliar/terapia , Femenino , Masculino , Terapia Neoadyuvante/métodos , Terapia Neoadyuvante/estadística & datos numéricos , Persona de Mediana Edad , Pronóstico , Anciano , Quimioterapia Adyuvante/estadística & datos numéricos , Quimioterapia Adyuvante/métodos , Estadificación de Neoplasias , Estimación de Kaplan-Meier
8.
J Hazard Mater ; 474: 134620, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820753

RESUMEN

Plants are widely existing in the environments and have been considered as potential sentinel species of toxic chemicals' exposure. In this study, the deadly toxic chemicals of three nitrogen mustards (NMs, including NH1, NH2 and NH3) were selected as the investigated targets. First, the reactivities of common endogenous plant components with NMs were examined in vitro. Then, the model plant Nicotiana benthamiana Domin was exposed to NMs. Three γ-aminobutyric acid-nitrogen mustard adducts (GABA-NMs) were identified in the living plant by high resolution mass spectrometry and comparison with the synthesized references. A sensitive detection method with the limits of quantification of 0.0500 ng mL-1 was developed using ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry. The GABA-NMs could be detected after 120 days of the exposure and even in the dead leaves without obvious decrease. Furthermore, 20 different plant species grown in diverse climate zones were exposed to HN1, and the adduct of GABA-HN1 was identified in all the leaves. The results showed the good universality and specificity of GABA-NMs as plant biomarkers for NMs exposure. This work provides a new approach for the pollution investigation of toxic chemicals through analysing biomarkers in plant materials.


Asunto(s)
Biomarcadores , Espectrometría de Masas en Tándem , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/análisis , Ácido gamma-Aminobutírico/metabolismo , Biomarcadores/análisis , Cromatografía Líquida de Alta Presión , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Mecloretamina/análisis , Mecloretamina/toxicidad , Mecloretamina/química , Nicotiana/química , Plantas/química , Plantas/metabolismo , Límite de Detección , Cromatografía Líquida con Espectrometría de Masas
9.
Cancer Lett ; 592: 216923, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697462

RESUMEN

Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.


Asunto(s)
Movimiento Celular , Neoplasias de la Vesícula Biliar , Neoplasias Hepáticas , Ribonucleoproteínas , Ubiquitinación , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mitofagia , Invasividad Neoplásica , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Tirosina Transaminasa
10.
Clin Exp Med ; 24(1): 49, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427120

RESUMEN

In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Multiómica , Biomarcadores de Tumor , Transición Epitelial-Mesenquimal
11.
J Cancer ; 15(7): 1916-1928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434987

RESUMEN

Background: Accumulating evidence indicates that non-coding RNAs (ncRNA), including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can function as competitive endogenous RNAs (ceRNAs) by binding to microRNAs (miRNAs) and regulating host gene expression at the transcriptional or post-transcriptional level. Dysregulation in ceRNA network regulation has been implicated in the occurrence and development of cancer. However, the lncRNA/circRNA-miRNA-mRNA regulatory network is still lacking in nasopharyngeal carcinoma (NPC). Methods: Differentially expressed genes (DEGs) were obtained from our previous sequencing data and Gene Expression Omnibus (GEO). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) were used to explore the biological functions of these common DEGs. Through a series of bioinformatic analyses, the lncRNA/circRNA-miRNA-mRNA network was established. In additional, the external data GSE102349 was used to test the prognostic value of the hub mRNAs through the Kaplan-Meier method. Results: We successfully constructed a lncRNA/circRNA-miRNA-mRNA network in NPC, consisting of 16 lncRNAs, 6 miRNAs, 3 circRNAs and 10 mRNAs and found that three genes (TOP2A, ZWINT, TTK) were significantly associated with overall survival time (OS) in patients. Conclusion: The regulatory network revealed in this study may help comprehensively elucidate the ceRNA mechanisms driving NPC, and provide novel candidate biomarkers for evaluating the prognosis of NPC.

12.
Mar Drugs ; 22(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38535448

RESUMEN

Shellfish poisoning is a common food poisoning. To comprehensively characterize proteome changes in the whole brain due to shellfish poisoning, Tandem mass tag (TMT)-based differential proteomic analysis was performed with a low-dose chronic shellfish poisoning model in mice. A total of 6798 proteins were confidently identified, among which 123 proteins showed significant changes (fold changes of >1.2 or <0.83, p < 0.05). In positive regulation of synaptic transmission, proteins assigned to a presynaptic membrane (e.g., Grik2) and synaptic transmission (e.g., Fmr1) changed. In addition, altered proteins in nervous system development were observed, suggesting that mice suffered nerve damage due to the nervous system being activated. Ion transport in model mice was demonstrated by a decrease in key enzymes (e.g., Kcnj11) in voltage-gated ion channel activity and solute carrier family (e.g., Slc38a3). Meanwhile, alterations in transferase activity proteins were observed. In conclusion, these modifications observed in brain proteins between the model and control mice provide valuable insights into understanding the functional mechanisms underlying shellfish poisoning.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Intoxicación por Mariscos , Animales , Ratones , Proteómica , Alimentos Marinos , Encéfalo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
13.
Cancer Lett ; 587: 216703, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341127

RESUMEN

Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias de la Vesícula Biliar , Humanos , Proteínas de Unión al ADN/genética , Neoplasias de la Vesícula Biliar/genética , Factores de Transcripción/genética , Empalme del ARN , Proliferación Celular , ARN Mensajero/genética , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homólogo 1 de la Proteína Discs Large/genética , Homólogo 1 de la Proteína Discs Large/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
14.
Ann Surg Oncol ; 31(4): 2443-2450, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37962741

RESUMEN

BACKGROUND: Chemotherapy and chemoradiation have become essential adjuncts to improve the survival of patients with resectable esophageal squamous cell carcinoma (ESCC) in the perioperative period. Although preoperative treatment plus surgery is commonly used, controversy remains regarding the optimal treatment strategy for patients with locally advanced ESCC. METHODS: A retrospective review of clinical stage II and III ESCC patients who underwent esophagectomy at Henan Cancer Hospital between October 2014 and October 2017 was performed. The patients were divided into a neoadjuvant chemotherapy (NAC) group and an adjuvant chemotherapy (AC) group. Propensity score matching (PSM) was used to exclude confounders. Survival was estimated using Kaplan‒Meier analysis and compared by the log-rank test. The Cox proportional hazards regression model was used for both the univariate and multivariate analyses. RESULTS: A total of 684 patients were enrolled, including 365 (53.4%) patients in the NAC group. After PSM, 294 pairs of patients were left. NAC prolonged the OS (not reached versus 57.3 months, P = 0.002) and DFS (57.2 vs. 36.4 months, P = 0.010) and decreased the total rate of recurrence (50.1% vs. 59.2%, P = 0.025) and local recurrence (27.9% vs. 36.7%, P = 0.022) compared with AC. The multivariable analyses showed that NAC plus surgery modality was an independent predictor for improved OS (HR: 0.582, 95% CI: 0.467-0.786, P = 0.001). CONCLUSION: NAC plus surgery prolonged OS and DFS, and significantly decreased the total rate of recurrence compared with surgery plus AC in patients with clinical stage II and III ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/cirugía , Terapia Neoadyuvante , Quimioterapia Adyuvante , Quimioradioterapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Esofagectomía , Estudios Retrospectivos , Estadificación de Neoplasias
17.
Anal Methods ; 16(2): 301-313, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38115807

RESUMEN

Rapid and accurate detection of hydrolyzed products of organophosphorus nerve agents (OPNAs) is an important method to effectively confirm the use of these agents. OPNAs are rapidly hydrolyzed to the methyl phosphonates (MPs) in the environment, which can be used as environmental traceability marker for OPNAs. Herein, magnetic mesoporous materials combined with real-time in situ mass spectrometry (MS) were used to achieve high-throughput detection of MPs. Novel magnetic mesoporous nanoparticles Fe3O4@nSiO2@mSiO2 were synthesized via co-condensation of tetraethyl orthosilicate and cetyltrimethylammonium bromide (CTAB) on the surface of nonporous silica-coated Fe3O4 under alkaline conditions. CTAB templates were removed by the reflux of ethanol (0.0375 mM ammonium nitrate) to form mesoporous SiO2, which has a large specific surface area of 549 m2 g-1 and an excellent magnetization strength of 59.6 emu g-1. A quick, cost-effective, rugged, and safe magnetic preparation method, magnetic QuEChERS, was established with magnetic mesoporous nanoparticles (Fe3O4@nSiO2@mSiO2) as adsorption materials for direct analysis in real-time and tandem MS (DART-MS/MS) of MPs in environmental samples. The method exhibits good linearity (R2 > 0.992) in the range of 20.0-4.00 µg mL-1, the limits of detection were <5.00 ng mL-1, the limits of quantification were <20.0 ng mL-1, and the extraction recoveries were 70.2-98.1%, with relative standard deviations (RSDs) in the range of 1.97-10.6%. Additionally, using this method, analysis of 70 environmental samples could be completed within 20 min. Then, the M-QuEChERS-DART-MS/MS method was applied to the 52nd Organisation for the Prohibition of Chemical Weapons (OPCW) environmental spiked samples analysis, where the accuracy was 95.2-116%, and the RSD was 1.16-7.83%. The results demonstrated that Fe3O4@nSiO2@mSiO2 based on the QuEChERS method can quickly and efficiently remove the matrix of environmental samples and when coupled with the DART-MS/MS can achieve high-throughput determination of MPs in environmental samples.

18.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139831

RESUMEN

Fenofibrate is known as a lipid-lowering drug. Although previous studies have reported that fenofibrate exhibits potential antitumor activities, IC50 values of fenofibrate could be as high as 200 µM. Therefore, we investigated the antitumor activities of six synthesized fenofibrate derivatives. We discovered that one compound, SIOC-XJC-SF02, showed significant antiproliferative activity on human hepatocellular carcinoma (HCC) HCCLM3 cells and HepG2 cells (the IC50 values were 4.011 µM and 10.908 µM, respectively). We also found this compound could inhibit the migration of human HCC cells. Transmission electron microscope and flow cytometry assays demonstrated that this compound could induce apoptosis of human HCC cells. The potential binding sites of this compound acting on human HCC cells were identified by mass spectrometry-cellular thermal shift assay (MS-CETSA). Molecular docking, Western blot, and enzyme activity assay-validated binding sites in human HCC cells. The results showed that fumarate hydratase may be a potential binding site of this compound, exerting antitumor effects. A xenograft model in nude mice demonstrated the anti-liver cancer activity and the mechanism of action of this compound. These findings indicated that the antitumor effect of this compound may act via activating fumarate hydratase, and this compound may be a promising antitumor candidate for further investigation.

19.
Opt Lett ; 48(22): 5843-5846, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966733

RESUMEN

The terahertz (THz) band has a great potential for the development of communication technology, but it has not been fully utilized due to the lack of practical devices, especially actively controllable multifunctional devices. Here, we propose and demonstrate a Ge2Sb2Te5 (GST)-based metamaterial device, where an actively controllable function is experimentally verified by inducing the crystallization process with thermal activation. Cross-polarization conversion in the reflection mode and circular-to-linear polarization conversion in the transmission mode are obtained under crystalline and amorphous GST conditions, respectively. The combination of GST and THz waves has a wide range of applications and will further advance the THz field.

20.
Heliyon ; 9(11): e22674, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034625

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 virus brings nasty crisis for public health in the world. Until now, the virus has caused multiple infections in many people. Detecting antigen to SARS-CoV-2 is a powerful method for the diagnosis of COVID-19 and is helpful for controlling and stopping the pandemic. Herein, a rapid and quantitative detection method of SARS-CoV-2 spike(S) protein was built based on the fluorescence resonance energy transfer (FRET) phenomenon without complicated steps. In the process of detecting, the carbon quantum dots (CQDs) and gold nanoparticles (AuNPs) act as donor and acceptor. By modifying the SARS-CoV-2 antibodies on the surface of CQDs and AuNPs, we achieved S protein specific detection using the distance-based FRET phenomenon. Through the electric charge regulation, the limit of detection (LOD) is 0.05 ng/mL, the linear range is 0.1-100 ng/mL, and the detection process only takes 12 min. The proposed method exhibits several advantages such as be available for variants (B.1.1.529 and B.1.617.2) and be suitable for human serum, which is of significance for detecting viral in time and prevention the viral transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA