Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Seizure ; 120: 41-48, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897163

RESUMEN

OBJECTIVE: To analyze cerebellar atrophy in genetic epileptic encephalopathies (EEs). METHODS: This research included a retrospective cohort study conducted from January 2016 to December 2023 and a systematic review on cerebellar atrophy in genetic EEs. Pediatric individuals who were diagnosed with EEs based on electroclinical features, carried causative gene variants, and exhibited cerebellar atrophy were recruited. Electroclinical features, neuroimaging findings, and causative variants of eligible individuals were analyzed. RESULTS: The cohort study showed 10 of 67 pediatric individuals (10/67; 15 %) who were diagnosed with genetic EEs had cerebellar atrophy; and 6 of the 10 individuals (6/10; 60 %) exhibited cerebellar signs. Diagnostic delay between the detection of cerebellar atrophy and the identification of genetic diagnosis existed in 6 individuals (6/10; 60 %) and the median duration was 4.4 years. A total of 32 genes, including 31 genes from the literature review and a newly identified SCN2A gene in this cohort, were reported associated with cerebellar atrophy in genetic EEs. Twenty-six genes (26/32; 81 %) accounted for cerebellar atrophy associated with other brain anomalies and 6 genes (6/32; 19 %) caused isolated cerebellar atrophy. Twenty-five genes (25/32; 78 %) showed late-onset cerebellar atrophy identified after the age of 1 year old. CONCLUSION: Cerebellar atrophy is not uncommon in genetic EEs and may serve as an indicator for molecular diagnosis in clinical practice. To shorten the diagnostic delay, follow-up neuroimaging study is crucial because of high rate of clinico-radiological dissociation and late-onset cerebellar atrophy in this patient group.

2.
J Colloid Interface Sci ; 672: 311-328, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38850859

RESUMEN

The difficulty of recycling and the finite photocatalytic performance of primitive nano-photocatalysts restrict their application in wastewater purification. In this study, a multifunctional membrane with efficient synergistic adsorption and degradation performance was constructed. The nano-photocatalyst layered bimetallic oxide (LDO) was combined with the matrix membrane polyarylether nitrile (PEN) by delayed phase transition technology. The introduced 2-Methylimidazole (2-MeIm) provided a virtual electron transfer pathway between PEN and LDO and enhanced the photocatalytic performance. The results suggested that PEN/LDO/2-MeIm has outstanding removal performance to organic dyes methylene blue (MB). After three consecutive cycles, the reacted membrane can be readily recovered from the system. The MB removal rate remained high at 89.38%, suggesting that the functional membrane is eligible for recycling and reuse. Finally, based on liquid chromatography-mass spectrometry (LC-MS) analysis and density functional theory (DFT) calculations, the mechanism and pathway of MB photodegradation by the PEN/LDO/2-MeIm system were proposed. Therefore, constructing PEN/LDO/2-MeIm membranes in this study may offer a novel perspective on creating eco-friendly and functional PEN-based membranes for practical use in wastewater purification.

5.
Signal Transduct Target Ther ; 9(1): 114, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678055

RESUMEN

Developing a mucosal vaccine against SARS-CoV-2 is critical for combatting the epidemic. Here, we investigated long-term immune responses and protection against SARS-CoV-2 for the intranasal vaccination of a triple receptor-binding domain (RBD) scaffold protein (3R-NC) adjuvanted with a flagellin protein (KFD) (3R-NC + KFDi.n). In mice, the vaccination elicited RBD-specific broad-neutralizing antibody responses in both serum and mucosal sites sustained at high level over a year. This long-lasting humoral immunity was correlated with the presence of long-lived RBD-specific IgG- and IgA-producing plasma cells, alongside the Th17 and Tfh17-biased T-cell responses driven by the KFD adjuvant. Based upon these preclinical findings, an open labeled clinical trial was conducted in individuals who had been primed with the inactivated SARS-CoV-2 (IAV) vaccine. With a favorable safety profile, the 3R-NC + KFDi.n boost elicited enduring broad-neutralizing IgG in plasma and IgA in salivary secretions. To meet the challenge of frequently emerged variants, we further designed an updated triple-RBD scaffold protein with mutated RBD combinations, which can induce adaptable antibody responses to neutralize the newly emerging variants, including JN.1. Our findings highlight the potential of the KFD-adjuvanted triple-RBD scaffold protein is a promising prototype for the development of a mucosal vaccine against SARS-CoV-2 infection.


Asunto(s)
Administración Intranasal , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Flagelina , SARS-CoV-2 , SARS-CoV-2/inmunología , Humanos , Flagelina/inmunología , Flagelina/genética , Flagelina/administración & dosificación , COVID-19/prevención & control , COVID-19/inmunología , Animales , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Femenino , Anticuerpos Antivirales/inmunología , Vacunación , Masculino , Adulto , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina A/inmunología , Persona de Mediana Edad
6.
Transl Androl Urol ; 13(1): 25-41, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38404552

RESUMEN

Background: Irradiation (IR) promotes inflammation and apoptosis by inducing oxidative stress and/or mitochondrial dysfunction (MD). The kidneys are rich in mitochondria, and mitophagy maintains normal renal function by eliminating damaged mitochondria and minimizing oxidative stress. However, whether astragaloside IV (AS-IV) can play a protective role through the mitophagy pathway is not known. Methods: We constructed a radiation injury model using hematoxylin and eosin (HE) staining, blood biochemical analysis, immunohistochemistry, TdT-mediated dUTP nick end labeling (TUNEL) staining, ultrastructural observation, and Western blot analysis to elucidate the AS-IV resistance mechanism for IR-induced renal injury. Results: IR induced mitochondrial damage; the increase of creatinine (SCr), blood urea nitrogen (BUN) and uric acid (UA); and the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome and apoptosis in renal tissue. AS-IV administration attenuated the IR-induced MD and reactive oxygen species (ROS) levels in the kidney; enhanced the levels of mitophagy-associated protein [PTEN-induced putative kinase 1 (PINK1)], parkin proteins, and microtubule-associated protein 1 light 3 (LC3) II/I ratio in renal tissues; diminished NLRP3 inflammasome activation-mediated proteins [cleaved cysteinyl aspartate-specific proteinase-1 (caspase-1), interleukin-1ß (IL-1ß)] and apoptosis-related proteins [cleaved caspase-9, cleaved caspase-3, BCL2-associated X (Bax)]; reduced SCr, BUN, and UA levels; and attenuated the histopathological alterations in renal tissue. Conversely, mitophagy inhibitor cyclosporin A (CsA) suppressed the AS-IV-mediated protection of renal tissue. Conclusions: AS-IV can strongly diminish the activation and apoptosis of NLRP3 inflammasome, thus attenuating the renal injury induced by radiation by promoting the PINK1/parkin-mediated mitophagy. These findings suggest that AS-IV is a promising drug for treating IR-induced kidney injury.

7.
Nat Protoc ; 19(5): 1311-1347, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38307980

RESUMEN

As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.


Asunto(s)
Técnicas Biosensibles , Ácido Láctico , Técnicas Biosensibles/métodos , Animales , Humanos , Ácido Láctico/metabolismo , Ácido Láctico/análisis , Ratones
8.
Nat Commun ; 15(1): 133, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168040

RESUMEN

Adipocytes are the primary sites for fatty acid storage, but the synthesis rate of fatty acids is very low. The physiological significance of this phenomenon remains unclear. Here, we show that surplus fatty acid synthesis in adipocytes induces necroptosis and lipodystrophy. Transcriptional activation of FASN elevates fatty acid synthesis, but decreases NADPH level and increases ROS production, which ultimately leads to adipocyte necroptosis. We identify MED20, a subunit of the Mediator complex, as a negative regulator of FASN transcription. Adipocyte-specific male Med20 knockout mice progressively develop lipodystrophy, which is reversed by scavenging ROS. Further, in a murine model of HIV-associated lipodystrophy and a human patient with acquired lipodystrophy, ROS neutralization significantly improves metabolic disorders, indicating a causal role of ROS in disease onset. Our study well explains the low fatty acid synthesis rate in adipocytes, and sheds light on the management of acquired lipodystrophy.


Asunto(s)
Adipocitos , Lipodistrofia , Masculino , Ratones , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Adipocitos/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Ácidos Grasos/metabolismo , Estrés Oxidativo , Ratones Noqueados
9.
ACS Appl Bio Mater ; 7(2): 1073-1080, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38215043

RESUMEN

Herein, we reported an innovative thermodynamic allosteric switch-actuated 3D DNA nanomachine for selective, sensitive, and accurate electrochemical (EC)/fluorescent (FL) dual-mode biosensing of a microphthalmia-associated transcription factor (MITF). The thermodynamic allosteric switch was ingeniously customized as a hairpin probe (HP) that was in dynamic equilibrium but rapidly interconverting conformations. At the "inactive state", the MITF-binding region and the switch part were "sequestered". Upon the introduction of MITF, an MITF-HP complex promptly formed, and the equilibrium of HP thermodynamically inclined from the "inactive state" toward the "active state" conformation. Immediately, the exposed switch on HP effectively actuated the 3D DNA nanomachine and synchronously produced the restriction site for Nb.BbvCI nicking endonuclease. After the autonomous conveying of the 3D DNA nanomachine by means of the high-efficiency circularly nicking endonuclease signal amplification (NESA), not only was MB-S1 in the supernatant used for FL measurements but also MB-SP/MNs/S2 in the precipitate was adapted for EC analysis, significantly improving the utilization of output products derived from the 3D DNA nanomachine. Accordingly, benefiting from the efficient DNA nanomachine signal amplification manner and the self-calibration function of a dual-mode bioassay, the constructed biosensor exhibits superior sensitivity and accuracy for MITF determination.


Asunto(s)
Técnicas Biosensibles , Factores de Transcripción , Factores de Transcripción/genética , ADN/química , Regulación de la Expresión Génica , Endonucleasas/genética
10.
Cancer Innov ; 2(2): 91-95, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38090061

RESUMEN

Lung adenocarcinoma (LUAD) patients with elevated breast cancer susceptibility gene 1 (BRCA1) expression had markedly worse overall survival and progression-free survival compared to those with reduced BRCA1 levels. In contrast, BRCA1 expression did not correlate with survival outcomes in squamous cell carcinoma patients. The overexpression of BRCA1 was an independent risk factor for LUAD and was indicative of an immune-suppressive tumor microenvironment.

11.
Vaccine ; 41(52): 7641-7646, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38016845

RESUMEN

A third dose of inactivated virus vaccine (IVV) boosts neutralizing antibodies, reducing SARS-CoV-2 transmission rate and COVID-19 severity. However, the impact of RBD-elicited antibodies and their neutralizing activity by the boost of IVV is unknown. We investigated the impact of IVV's boost shot on RBD-elicited antibodies and their neutralizing activity in 18 subjects receiving the second and third IVV doses. Using an RBD antibodies depletion assay, we assessed the neutralizing activity of RBD-elicited antibodies. After the second dose, RBD-antigen elicitation accounted for ∼60% of neutralizing activity, which increased to 82% after the IVV boost against ancestral SARS-CoV-2. Depleting class 3 and class 4-specific antibodies with the Beta-RBD protein revealed that NAbs targeting RBD class 1 and class 2 subdomains increased from 57% to 75% post-boost. These findings highlight the significant enhancement of RBD-specific antibodies, especially against RBD class 1 and class 2, with IVV booster doses. Our study offers valuable insights for optimizing COVID-19 vaccine strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Epítopos , Vacunas de Productos Inactivados , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos , Anticuerpos Bloqueadores , Anticuerpos Neutralizantes , Anticuerpos Antivirales
12.
Nat Metab ; 5(11): 1887-1910, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37903887

RESUMEN

Senescent cells remain metabolically active, but their metabolic landscape and resulting implications remain underexplored. Here, we report upregulation of pyruvate dehydrogenase kinase 4 (PDK4) upon senescence, particularly in some stromal cell lines. Senescent cells display a PDK4-dependent increase in aerobic glycolysis and enhanced lactate production but maintain mitochondrial respiration and redox activity, thus adopting a special form of metabolic reprogramming. Medium from PDK4+ stromal cells promotes the malignancy of recipient cancer cells in vitro, whereas inhibition of PDK4 causes tumor regression in vivo. We find that lactate promotes reactive oxygen species production via NOX1 to drive the senescence-associated secretory phenotype, whereas PDK4 suppression reduces DNA damage severity and restrains the senescence-associated secretory phenotype. In preclinical trials, PDK4 inhibition alleviates physical dysfunction and prevents age-associated frailty. Together, our study confirms the hypercatabolic nature of senescent cells and reveals a metabolic link between cellular senescence, lactate production, and possibly, age-related pathologies, including but not limited to cancer.


Asunto(s)
Ácido Láctico , Neoplasias , Proteínas Quinasas , Regulación hacia Arriba , Senescencia Celular
13.
Emerg Microbes Infect ; 12(2): 2245931, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37542407

RESUMEN

Yearly epidemics of seasonal influenza cause an enormous disease burden around the globe. An understanding of the rules behind the immune response with repeated vaccination still presents a significant challenge, which would be helpful for optimizing the vaccination strategy. In this study, 34 healthy volunteers with 16 vaccinated were recruited, and the dynamics of the BCR repertoire for consecutive vaccinations in two seasons were tracked. In terms of diversity, length, network, V and J gene segments usage, somatic hypermutation (SHM) rate and isotype, it was found that the overall changes were stronger in the acute phase of the first vaccination than the second vaccination. However, the V gene segments of IGHV4-39, IGHV3-9, IGHV3-7 and IGHV1-69 were amplified in the acute phase of the first vaccination, with IGHV3-7 dominant. On the other hand, for the second vaccination, the changes were dominated by IGHV1-69, with potential for coding broad neutralizing antibody. Additional analysis indicates that the application of V gene segment for IGHV3-7 in the acute phase of the first vaccination was due to the elevated usage of isotypes IgM and IgG3. While for IGHV1-69 in the second vaccination, it was contributed by isotypes IgG1 and IgG2. Finally, 41 public BCR clusters were identified in the vaccine group, with both IGHV3-7 and IGHV1-69 were involved and representative complementarity determining region 3 (CDR3) motifs were characterized. This study provides insights into the immune response dynamics following repeated influenza vaccination in humans and can inform universal vaccine design and vaccine strategies in the future.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Gripe Humana , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Gripe Humana/prevención & control , Gripe Humana/genética , Regiones Determinantes de Complementariedad/genética , Familia de Multigenes , Vacunación
14.
ACS Omega ; 8(31): 28715-28732, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576622

RESUMEN

Sedimentary organic facies cover the formation, evolution, and spatial distribution characteristics of organic matter, and they are effective tools for oil and gas resource evaluation and basin prospect prediction. According to the basic organic rock composition of the sedimentary organic facies, combined with the sedimentary facies and organic matter geochemical characteristics of Carboniferous-Permian strata, the characteristics of organic facies and hydrocarbon-generation potential of Upper Paleozoic source rocks in Huanghua Depression are being discussed. The results show that source rocks of Taiyuan and Shanxi Formations in the study area were oil-prone, and the oil-generation potential of mudstone is greater than that of carbonaceous mudstone and coal. The organic facies in the study area can be divided into six types: (1) terrestrial forest organic facies; (2) shallow swamp forest organic facies; (3) deep swamp forest organic facies; (4) deep swamp reed organic facies; (5) flowing water swamp organic facies; and (6) open water organic facies. The Taiyuan Formation is mainly composed of flowing water swamp, deep swamp forest, and shallow swamp forest with a strong hydrocarbon-generation capacity, while the Shanxi Formation chiefly includes organic facies of the deep swamp forest and shallow swamp forest. The deep swamp reed sedimentary organic facies had the highest hydrocarbon-generation potential, while the terrestrial forest sedimentary organic facies had the worst hydrocarbon-generation potential. Coal had a certain oil-generating capacity but was weaker than that of mudstone. Compared with mudstone, coal had a stronger gas-generating capacity.

15.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1305-1312, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236948

RESUMEN

To resolve the issue of scientific planning and rational layout of different vegetable greenhouses in Inner Mongolia Autonomous Region, we selected the days of low temperature in winter, sunshine hours, overcast days, extreme minimum temperature, days of monsoon disaster, days of snow cover in production season of greenhouse as the climate zoning indicators, based on ground-based observation data from 119 meteorological stations (1991 to 2020) and the growing demand of leafy and fruity vegetables in greenhouse, combined with the analysis of key meteorological factors in production season and the study of meteorological disaster indicators such as low temperature and cold damage, wind disaster, snow disaster. We analyzed the indices, classification and division of comprehensive climate suitability zoning of leafy and fruity vegetables at various slopes (35°, 40°) of solar greenhouse by the weighted sum method. The results showed that the climatic suitability zoning grades of leafy and fruity vegetables at 35° and 40° slope of greenhouse was highly consistent, and that the greenhouse climate suitability of leafy vegetables was higher than that of fruity vegetables in the same region. As the slope increased, wind disaster index decreased and snow disaster index increased. Climate suitability was different in areas affected by wind and snow disasters. The northeast of the study area was mainly affected by snow disasters, and the climate suitability of 40° slope was higher than 35°. The southeast of the study area was mainly affected by wind disasters, and the climate suitability of 35° slope was higher than 40°. Alxa League, Hetao Irrigation District, Tumochuan Plain, most parts of Ordos, southeast of Yanshan foothills and the south of West Liaohe Plain were the most suitable area for the solar greenhouse, because they had the suitable solar and hot resources and the low risks of wind and snow damage, which were also the key development areas of current and future facility agriculture. Due to the deficiency of solar and hot resources, high energy consumption in greenhouse production and frequent snow storms, the area around Khingan range in the northeast of Inner Mongolia was unsuitable for greenhouse.


Asunto(s)
Nieve , Verduras , Estaciones del Año , China , Agricultura , Cambio Climático
16.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196033

RESUMEN

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteolisis , Replicación Viral , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
17.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049263

RESUMEN

An infrared photodetector is a critical component that detects, identifies, and tracks complex targets in a detection system. Infrared photodetectors based on 3D bulk materials are widely applied in national defense, military, communications, and astronomy fields. The complex application environment requires higher performance and multi-dimensional capability. The emergence of 2D materials has brought new possibilities to develop next-generation infrared detectors. However, the inherent thickness limitations and the immature preparation of 2D materials still lead to low quantum efficiency and slow response speeds. This review summarizes 2D/3D hybrid van der Waals heterojunctions for infrared photodetection. First, the physical properties of 2D and 3D materials related to detection capability, including thickness, band gap, absorption band, quantum efficiency, and carrier mobility, are summarized. Then, the primary research progress of 2D/3D infrared detectors is reviewed from performance improvement (broadband, high-responsivity, fast response) and new functional devices (two-color detectors, polarization detectors). Importantly, combining low-doped 3D and flexible 2D materials can effectively improve the responsivity and detection speed due to a significant depletion region width. Furthermore, combining the anisotropic 2D lattice structure and high absorbance of 3D materials provides a new strategy in high-performance polarization detectors. This paper offers prospects for developing 2D/3D high-performance infrared detection technology.

18.
Cell Death Dis ; 14(4): 272, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072408

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast neoplasms with a higher risk of recurrence and metastasis than non-TNBC. Nevertheless, the factors responsible for the differences in the malignant behavior between TNBC and non-TNBC are not fully explored. Proline rich 15 (PRR15) is a protein involved in the progression of several tumor types, but its mechanisms are still controversial. Therefore, this study aimed to investigate the biological role and clinical applications of PRR15 on TNBC. PRR15 gene was differentially expressed between TNBC and non-TNBC patients, previously described as an oncogenic factor in breast cancer. However, our results showed a decreased expression of PRR15 that portended a favorable prognosis in TNBC rather than non-TNBC. PRR15 knockdown facilitated the proliferation, migration, and invasive ability of TNBC cells in vitro and in vivo, which was abolished by PRR15 restoration, without remarkable effects on non-TNBC. High-throughput drug sensitivity revealed that PI3K/Akt signaling was involved in the aggressive properties of PRR15 silencing, which was confirmed by the PI3K/Akt signaling activation in the tumors of PRR15Low patients, and PI3K inhibitor reversed the metastatic capacity of TNBC in mice. The reduced PRR15 expression in TNBC patients was positively correlated with more aggressive clinicopathological characteristics, enhanced metastasis, and poor disease-free survival. Collectively, PRR15 down-regulation promotes malignant progression through the PI3K/Akt signaling in TNBC rather than in non-TNBC, affects the response of TNBC cells to antitumor agents, and is a promising indicator of disease outcomes in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular , Transducción de Señal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
19.
Eur J Med Chem ; 250: 115199, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827953

RESUMEN

Deep learning-based in silico alternatives have been demonstrated to be of significant importance in the acceleration of the drug discovery process and enhancement of success rates. Cyclin-dependent kinase 12 (CDK12) is a transcription-related cyclin-dependent kinase that may act as a biomarker and therapeutic target for cancers. However, currently, there is no high selective CDK12 inhibitor in clinical development and the identification of new specific CDK12 inhibitors has become increasingly challenging due to their similarity with CDK13. In this study, we developed a virtual screening workflow that combines deep learning with virtual screening tools and can be applied rapidly to millions of molecules. We designed a Transformer architecture Drug-Target Interaction (DTI) model with dual-branched self-supervised pre-trained molecular graph models and protein sequence models. Our predictive model produced satisfactory predictions for various targets, including CDK12, with several novel hits. We screened a large compound library consisting of 4.5 million drug-like molecules and recommended a list of potential CDK12 inhibitors for further experimental testing. In kinase assay, compared to the positive CDK12 inhibitor THZ531, the compounds CICAMPA-01, 02, 03 displayed more effective inhibition of CDK12, up to three times as much as THZ531. The compounds CICAMPA-03, 05, 04, 07 showed less inhibition of CDK13 compare to THZ531. In vitro, the IC50 of CICAMPA-01, 04, 05, 06, 09 was less than 3 µM in the HER2 positive CDK12 amplification breast cancer cell line BT-474. Overall, this study provides a highly efficient and end-to-end deep learning protocol, in conjunction with molecular docking, for discovering CDK12 inhibitors in cancers. Additionally, we disclose five novel CDK12 inhibitors. These results may accelerate the discovery of novel chemical-class drugs for cancer treatment.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Simulación del Acoplamiento Molecular , Quinasas Ciclina-Dependientes , Neoplasias de la Mama/tratamiento farmacológico
20.
Cell Metab ; 35(1): 200-211.e9, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36309010

RESUMEN

Despite its central importance in cellular metabolism, many details remain to be determined regarding subcellular lactate metabolism and its regulation in physiology and disease, as there is sensitive spatiotemporal resolution of lactate distribution, and dynamics remains a technical challenge. Here, we develop and characterize an ultrasensitive, highly responsive, ratiometric lactate sensor, named FiLa, enabling the monitoring of subtle lactate fluctuations in living cells and animals. Utilizing FiLa, we demonstrate that lactate is highly enriched in mammalian mitochondria and compile an atlas of subcellular lactate metabolism that reveals lactate as a key hub sensing various metabolic activities. In addition, FiLa sensors also enable direct imaging of elevated lactate levels in diabetic mice and facilitate the establishment of a simple, rapid, and sensitive lactate assay for point-of-care clinical screening. Thus, FiLa sensors provide powerful, broadly applicable tools for defining the spatiotemporal landscape of lactate metabolism in health and disease.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Mitocondrias/metabolismo , Ácido Láctico/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA