Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Commun Eng ; 3(1): 133, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39284899

RESUMEN

Computer-aided diagnosis (CAD) has advanced medical image analysis, while large language models (LLMs) have shown potential in clinical applications. However, LLMs struggle to interpret medical images, which are critical for decision-making. Here we show a strategy integrating LLMs with CAD networks. The framework uses LLMs' medical knowledge and reasoning to enhance CAD network outputs, such as diagnosis, lesion segmentation, and report generation, by summarizing information in natural language. The generated reports are of higher quality and can improve the performance of vision-based CAD models. In chest X-rays, an LLM using ChatGPT improved diagnosis performance by 16.42 percentage points compared to state-of-the-art models, while GPT-3 provided a 15.00 percentage point F1-score improvement. Our strategy allows accurate report generation and creates a patient-friendly interactive system, unlike conventional CAD systems only understood by professionals. This approach has the potential to revolutionize clinical decision-making and patient communication.

2.
ArXiv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39253642

RESUMEN

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear. In this study, we unprecedently explored how regional cortical growth affects brain folding patterns using computational simulation. We first developed growth models for typical cortical regions using machine learning (ML)-assisted symbolic regression, based on longitudinal real surface expansion and cortical thickness data from prenatal and infant brains derived from over 1,000 MRI scans of 735 pediatric subjects with ages ranging from 29 post-menstrual weeks to 24 months. These models were subsequently integrated into computational software to simulate cortical development with anatomically realistic geometric models. We comprehensively quantified the resulting folding patterns using multiple metrics such as mean curvature, sulcal depth, and gyrification index. Our results demonstrate that regional growth models generate complex brain folding patterns that more closely match actual brains structures, both quantitatively and qualitatively, compared to conventional uniform growth models. Growth magnitude plays a dominant role in shaping folding patterns, while growth trajectory has a minor influence. Moreover, multi-region models better capture the intricacies of brain folding than single-region models. Our results underscore the necessity and importance of incorporating regional growth heterogeneity into brain folding simulations, which could enhance early diagnosis and treatment of cortical malformations and neurodevelopmental disorders such as cerebral palsy and autism.

3.
Front Pediatr ; 12: 1411676, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281190

RESUMEN

Background: Congenital sideroblastic anemia (CSA) constitutes a group of inherited erythropoietic disorders. Some affect mainly or exclusively erythroid cells; other syndromic forms occur within multisystem disorders with extensive nonhematopoietic manifestations. In this study, we have performed clinical and molecular investigations on a 10-year-old boy suspected of having CSA. Methods: Routine blood examination, peripheral blood and bone marrow smears, and serum iron tests were performed. Gene mutation analysis was conducted using whole-exome sequencing (WES) and the results were confirmed using Sanger sequencing. Furthermore, the functional impact of the identified variant was assessed/predicted with bioinformatics methods. Results: The patient presented with severe microcytic anemia (hemoglobin, 50 g/L), iron overload and ring sideroblasts in the bone marrow. Moreover, WES revealed the presence of a hemizygous missense variant in ALAS2 (c.1102C > T), changing an encoded arginine to tryptophan (p. Arg368Trp). This variant was verified via Sanger sequencing, and neither of the parents carried this variant, which was suspected to be a de novo variant. Using in silico analysis with four different software programs, the variant was predicted to be harmful. PyMol and LigPlot software showed that the p. Arg368Trp variant may result in changes in hydrogen bonds. The patient was treated with vitamin B6 combined with deferasirox. After 6 months, the hemoglobin increased to 99 g/L and the serum ferritin decreased significantly. Conclusion: We report a novel pathogenic variant in the ALAS2 gene (c.1102C > T:p. Arg368Trp), which caused CSA in a 10-year-old boy. Mutational analysis is important in patients with CSA when family history data are unavailable. Anemia due to the ALAS2 Arg368Trp variant responds to pyridoxine supplements.

4.
Pract Radiat Oncol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39243241

RESUMEN

PURPOSE: To introduce the concept of using large language models (LLMs) to relabel structure names in accordance with the American Association of Physicists in Medicine Task Group-263 standard and to establish a benchmark for future studies to reference. METHODS AND MATERIALS: Generative Pretrained Transformer (GPT)-4 was implemented within a Digital Imaging and Communications in Medicine server. Upon receiving a structure-set Digital Imaging and Communications in Medicine file, the server prompts GPT-4 to relabel the structure names according to the American Association of Physicists in Medicine Task Group-263 report. The results were evaluated for 3 disease sites: prostate, head and neck, and thorax. For each disease site, 150 patients were randomly selected for manually tuning the instructions prompt (in batches of 50), and 50 patients were randomly selected for evaluation. Structure names considered were those that were most likely to be relevant for studies using structure contours for many patients. RESULTS: The per-patient accuracy was 97.2%, 98.3%, and 97.1% for prostate, head and neck, and thorax disease sites, respectively. On a per-structure basis, the clinical target volume was relabeled correctly in 100%, 95.3%, and 92.9% of cases, respectively. CONCLUSIONS: Given the accuracy of GPT-4 in relabeling structure names as presented in this work, LLMs are poised to become an important method for standardizing structure names in radiation oncology, especially considering the rapid advancements in LLM capabilities that are likely to continue.

5.
J Clin Ultrasound ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239751

RESUMEN

Malignant melanoma is a rare malignant tumor that can occur in many parts of the body. Primary vaginal malignant melanoma (PVMM) in women accounts for only 3%-7% of all malignant melanomas. PVMM is extremely rare, aggressive, and has a poor prognosis. We report a case of primary vaginal malignant melanoma in order to improve our understanding of the disease.

6.
Med Image Anal ; 99: 103328, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39243599

RESUMEN

Identifying anatomical correspondences in the human brain throughout the lifespan is an essential prerequisite for studying brain development and aging. But given the tremendous individual variability in cortical folding patterns, the heterogeneity of different neurodevelopmental stages, and the scarce of neuroimaging data, it is difficult to infer reliable lifespan anatomical correspondence at finer scales. To solve this problem, in this work, we take the advantage of the developmental continuity of the cerebral cortex and propose a novel transfer learning strategy: the model is trained from scratch using the age group with the largest sample size, and then is transferred and adapted to the other groups following the cortical developmental trajectory. A novel loss function is designed to ensure that during the transfer process the common patterns will be extracted and preserved, while the group-specific new patterns will be captured. The proposed framework was evaluated using multiple datasets covering four lifespan age groups with 1,000+ brains (from 34 gestational weeks to young adult). Our experimental results show that: 1) the proposed transfer strategy can dramatically improve the model performance on populations (e.g., early neurodevelopment) with very limited number of training samples; and 2) with the transfer learning we are able to robustly infer the complicated many-to-many anatomical correspondences among different brains at different neurodevelopmental stages. (Code will be released soon: https://github.com/qidianzl/CDC-transfer).

7.
Neural Netw ; 179: 106592, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39168070

RESUMEN

Brain age (BA) is defined as a measure of brain maturity and could help characterize both the typical brain development and neuropsychiatric disorders in mammals. Various biological phenotypes have been successfully applied to predict BA of human using chronological age (CA) as label. However, whether the BA of macaque, one of the most important animal models, can also be reliably predicted is largely unknown. To address this question, we propose a novel deep learning model called Multi-Branch Vision Transformer (MB-ViT) to fuse multi-scale (i.e., from coarse-grained to fine-grained) brain functional connectivity (FC) patterns derived from resting state functional magnetic resonance imaging (rs-fMRI) data to predict BA of macaques. The discriminative functional connections and the related brain regions contributing to the prediction are further identified based on Gradient-weighted Class Activation Mapping (Grad-CAM) method. Our proposed model successfully predicts BA of 450 normal rhesus macaques from the publicly available PRIMatE Data Exchange (PRIME-DE) dataset with lower mean absolute error (MAE) and mean square error (MSE) as well as higher Pearson's correlation coefficient (PCC) and coefficient of determination (R2) compared to other baseline models. The correlation between the predicted BA and CA reaches as high as 0.82 of our proposed method. Furthermore, our analysis reveals that the functional connections predominantly contributing to the prediction results are situated in the primary motor cortex (M1), visual cortex, area v23 in the posterior cingulate cortex, and dysgranular temporal pole. In summary, our proposed deep learning model provides an effective tool to accurately predict BA of primates (macaque in this study), and lays a solid foundation for future studies of age-related brain diseases in those animal models.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Macaca mulatta , Imagen por Resonancia Magnética , Animales , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Envejecimiento/fisiología , Redes Neurales de la Computación , Mapeo Encefálico/métodos , Masculino
8.
Nat Med ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112796

RESUMEN

Traditional biomedical artificial intelligence (AI) models, designed for specific tasks or modalities, often exhibit limited flexibility in real-world deployment and struggle to utilize holistic information. Generalist AI holds the potential to address these limitations due to its versatility in interpreting different data types and generating tailored outputs for diverse needs. However, existing biomedical generalist AI solutions are typically heavyweight and closed source to researchers, practitioners and patients. Here, we describe BiomedGPT, the first open-source and lightweight vision-language foundation model, designed as a generalist capable of performing various biomedical tasks. BiomedGPT achieved state-of-the-art results in 16 out of 25 experiments while maintaining a computing-friendly model scale. We also conducted human evaluations to assess the capabilities of BiomedGPT in radiology visual question answering, report generation and summarization. BiomedGPT exhibits robust prediction ability with a low error rate of 3.8% in question answering, satisfactory performance with an error rate of 8.3% in writing complex radiology reports, and competitive summarization ability with a nearly equivalent preference score to human experts. Our method demonstrates that effective training with diverse data can lead to more practical biomedical AI for improving diagnosis and workflow efficiency.

9.
Med Image Anal ; 98: 103310, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39182302

RESUMEN

The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM's performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM's pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM's pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Tomografía Computarizada por Rayos X/métodos
10.
Artículo en Inglés | MEDLINE | ID: mdl-38976473

RESUMEN

Learning with little data is challenging but often inevitable in various application scenarios where the labeled data are limited and costly. Recently, few-shot learning (FSL) gained increasing attention because of its generalizability of prior knowledge to new tasks that contain only a few samples. However, for data-intensive models such as vision transformer (ViT), current fine-tuning-based FSL approaches are inefficient in knowledge generalization and, thus, degenerate the downstream task performances. In this article, we propose a novel mask-guided ViT (MG-ViT) to achieve an effective and efficient FSL on the ViT model. The key idea is to apply a mask on image patches to screen out the task-irrelevant ones and to guide the ViT focusing on task-relevant and discriminative patches during FSL. Particularly, MG-ViT only introduces an additional mask operation and a residual connection, enabling the inheritance of parameters from pretrained ViT without any other cost. To optimally select representative few-shot samples, we also include an active learning-based sample selection method to further improve the generalizability of MG-ViT-based FSL. We evaluate the proposed MG-ViT on classification, object detection, and segmentation tasks using gradient-weighted class activation mapping (Grad-CAM) to generate masks. The experimental results show that the MG-ViT model significantly improves the performance and efficiency compared with general fine-tuning-based ViT and ResNet models, providing novel insights and a concrete approach toward generalizing data-intensive and large-scale deep learning models for FSL.

11.
Helicobacter ; 29(3): e13100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873839

RESUMEN

BACKGROUND: The formation of gallstones is often accompanied by chronic inflammation, and the mechanisms underlying inflammation and stone formation are not fully understood. Our aim is to utilize single-cell transcriptomics, bulk transcriptomics, and microbiome data to explore key pathogenic bacteria that may contribute to chronic inflammation and gallstone formation, as well as their associated mechanisms. METHODS: scRNA-seq data from a gallstone mouse model were extracted from the Gene Expression Omnibus (GEO) database and analyzed using the FindCluster() package for cell clustering analysis. Bulk transcriptomics data from patients with gallstone were also extracted from the GEO database, and intergroup functional differences were assessed using GO and KEGG enrichment analysis. Additionally, 16S rRNA sequencing was performed on gallbladder mucosal samples from asymptomatic patients with gallstone (n = 6) and liver transplant donor gallbladder mucosal samples (n = 6) to identify key bacteria associated with stone formation and chronic inflammation. Animal models were constructed to investigate the mechanisms by which these key pathogenic bacterial genera promote gallstone formation. RESULTS: Analysis of scRNA-seq data from the gallstone mouse model (GSE179524) revealed seven distinct cell clusters, with a significant increase in neutrophil numbers in the gallstone group. Analysis of bulk transcriptomics data from patients with gallstone (GSE202479) identified chronic inflammation in the gallbladder, potentially associated with dysbiosis of the gallbladder microbiota. 16S rRNA sequencing identified Helicobacter pylori as a key bacterium associated with gallbladder chronic inflammation and stone formation. CONCLUSIONS: Dysbiosis of the gallbladder mucosal microbiota is implicated in gallstone disease and leads to chronic inflammation. This study identified H. pylori as a potential key mucosal resident bacterium contributing to gallstone formation and discovered its key pathogenic factor CagA, which causes damage to the gallbladder mucosal barrier. These findings provide important clues for the prevention and treatment of gallstones.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Células Epiteliales , Vesícula Biliar , Cálculos Biliares , Helicobacter pylori , Animales , Cálculos Biliares/microbiología , Cálculos Biliares/patología , Células Epiteliales/microbiología , Ratones , Humanos , Vesícula Biliar/microbiología , Vesícula Biliar/patología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Helicobacter pylori/fisiología , ARN Ribosómico 16S/genética , Modelos Animales de Enfermedad , Permeabilidad , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Femenino , Masculino , Ratones Endogámicos C57BL
12.
IEEE Trans Med Imaging ; PP2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889023

RESUMEN

Medical report generation is a valuable and challenging task, which automatically generates accurate and fluent diagnostic reports for medical images, reducing workload of radiologists and improving efficiency of disease diagnosis. Fine-grained alignment of medical images and reports facilitates the exploration of close correlations between images and texts, which is crucial for cross-modal generation. However, visual and linguistic biases caused by radiologists' writing styles make cross-modal image-text alignment difficult. To alleviate visual-linguistic bias, this paper discretizes medical reports and introduces an intermediate modality, i.e. phrasebook, consisting of key noun phrases. As discretized representation of medical reports, phrasebook contains both disease-related medical terms, and synonymous phrases representing different writing styles which can identify synonymous sentences, thereby promoting fine-grained alignment between images and reports. In this paper, an augmented two-stage medical report generation model with phrasebook (PhraseAug) is developed, which combines medical images, clinical histories and writing styles to generate diagnostic reports. In the first stage, phrasebook is used to extract semantically relevant important features and predict key phrases contained in the report. In the second stage, medical reports are generated according to the predicted key phrases which contain synonymous phrases, promoting our model to adapt to different writing styles and generating diverse medical reports. Experimental results on two public datasets, IU-Xray and MIMIC-CXR, demonstrate that our proposed PhraseAug outperforms state-of-the-art baselines.

13.
Biotechnol Adv ; 74: 108399, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38925317

RESUMEN

Microbial cell factories (MCFs) have been leveraged to construct sustainable platforms for value-added compound production. To optimize metabolism and reach optimal productivity, synthetic biology has developed various genetic devices to engineer microbial systems by gene editing, high-throughput protein engineering, and dynamic regulation. However, current synthetic biology methodologies still rely heavily on manual design, laborious testing, and exhaustive analysis. The emerging interdisciplinary field of artificial intelligence (AI) and biology has become pivotal in addressing the remaining challenges. AI-aided microbial production harnesses the power of processing, learning, and predicting vast amounts of biological data within seconds, providing outputs with high probability. With well-trained AI models, the conventional Design-Build-Test (DBT) cycle has been transformed into a multidimensional Design-Build-Test-Learn-Predict (DBTLP) workflow, leading to significantly improved operational efficiency and reduced labor consumption. Here, we comprehensively review the main components and recent advances in AI-aided microbial production, focusing on genome annotation, AI-aided protein engineering, artificial functional protein design, and AI-enabled pathway prediction. Finally, we discuss the challenges of integrating novel AI techniques into biology and propose the potential of large language models (LLMs) in advancing microbial production.


Asunto(s)
Inteligencia Artificial , Biología Sintética , Biología Sintética/métodos , Ingeniería Metabólica/métodos , Ingeniería de Proteínas/métodos
14.
Clin Cancer Res ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848042

RESUMEN

PURPOSE: This study aimed to elucidate the impact of brain tumors on cerebral edema and glymphatic drainage, leveraging advanced imaging techniques to explore the relationship between tumor characteristics, glymphatic function, and aquaporin 4 (AQP4) expression. EXPERIMENTAL DESIGN: In a prospective cohort from March 2022 to April 2023, patients with glioblastoma, brain metastases, and aggressive meningiomas, alongside age- and sex-matched healthy controls, underwent 3.0T MRI, including Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index and Multiparametric MRI (MTP) for quantitative brain mapping. Tumor and peri-tumor tissues were analyzed for AQP4 expression via immunofluorescence. Correlations between imaging parameters, glymphatic function (DTI-ALPS index), and AQP4 expression were statistically assessed. RESULTS: Among 84 patients (mean age: 55 ± 12 years; 38 males) and 59 controls (mean age: 54 ± 8 years; 23 males), brain tumor patients exhibited significantly reduced glymphatic function (DTI-ALPS index: 2.315 vs. 2.879; p = 0.001) and increased cerebrospinal fluid (CSF) volume (201.376 cm³ vs. 115.957 cm³; p = 0.001). A negative correlation was observed between tumor volume and the DTI-ALPS index (r: -0.715, p < 0.001), while AQP4 expression correlated positively with peritumoral brain edema (PTBE) volume (r: 0.989; p < 0.001) and negatively with PD in PTBE areas (ρ: -0.506; p < 0.001). CONCLUSIONS: Our findings highlight the interplay between tumor-induced compression, glymphatic dysfunction, and altered fluid dynamics, showing the utility of DTI-ALPS and MTP in understanding the pathophysiology of tumor-related cerebral edema. These insights provide a radiological foundation for further neuro-oncological investigations into the glymphatic system.

15.
Med Image Anal ; 96: 103205, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788328

RESUMEN

Multi-phase enhanced computed tomography (MPECT) translation from plain CT can help doctors to detect the liver lesion and prevent patients from the allergy during MPECT examination. Existing CT translation methods directly learn an end-to-end mapping from plain CT to MPECT, ignoring the crucial clinical domain knowledge. As clinicians subtract the plain CT from MPECT images as subtraction image to highlight the contrast-enhanced regions and further to facilitate liver disease diagnosis in the clinical diagnosis, we aim to exploit this domain knowledge for automatic CT translation. To this end, we propose a Mask-Aware Transformer (MAFormer) with structure invariant loss for CT translation, which presents the first effort to exploit this domain knowledge for CT translation. Specifically, the proposed MAFormer introduces a mask estimator to predict the subtraction image from the plain CT image. To integrate the subtraction image into the network, the MAFormer devises a Mask-Aware Transformer based Normalization (MATNorm) as normalization layer to highlight the contrast-enhanced regions and capture the long-range dependencies among these regions. Moreover, aiming to preserve the biological structure of CT slices, a structure invariant loss is designed to extract the structural information and minimize the structural similarity between the plain and synthetic CT images to ensure the structure invariant. Extensive experiments have proven the effectiveness of the proposed method and its superiority to the state-of-the-art CT translation methods. Source code is to be released.


Asunto(s)
Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Técnica de Sustracción , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
16.
Elife ; 122024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635322

RESUMEN

Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.


Asunto(s)
Encéfalo , Macaca , Animales , Humanos
17.
IEEE Trans Med Imaging ; PP2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587958

RESUMEN

In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.

18.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38483143

RESUMEN

Gyri and sulci are 2 fundamental cortical folding patterns of the human brain. Recent studies have suggested that gyri and sulci may play different functional roles given their structural and functional heterogeneity. However, our understanding of the functional differences between gyri and sulci remains limited due to several factors. Firstly, previous studies have typically focused on either the spatial or temporal domain, neglecting the inherently spatiotemporal nature of brain functions. Secondly, analyses have often been restricted to either local or global scales, leaving the question of hierarchical functional differences unresolved. Lastly, there has been a lack of appropriate analytical tools for interpreting the hierarchical spatiotemporal features that could provide insights into these differences. To overcome these limitations, in this paper, we proposed a novel hierarchical interpretable autoencoder (HIAE) to explore the hierarchical functional difference between gyri and sulci. Central to our approach is its capability to extract hierarchical features via a deep convolutional autoencoder and then to map these features into an embedding vector using a carefully designed feature interpreter. This process transforms the features into interpretable spatiotemporal patterns, which are pivotal in investigating the functional disparities between gyri and sulci. We evaluate the proposed framework on Human Connectome Project task functional magnetic resonance imaging dataset. The experiments demonstrate that the HIAE model can effectively extract and interpret hierarchical spatiotemporal features that are neuroscientifically meaningful. The analyses based on the interpreted features suggest that gyri are more globally activated, whereas sulci are more locally activated, demonstrating a distinct transition in activation patterns as the scale shifts from local to global. Overall, our study provides novel insights into the brain's anatomy-function relationship.


Asunto(s)
Corteza Cerebral , Conectoma , Humanos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/métodos , Cabeza
19.
Med Image Anal ; 94: 103136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489895

RESUMEN

Decoding brain states under different cognitive tasks from functional magnetic resonance imaging (fMRI) data has attracted great attention in the neuroimaging filed. However, the well-known temporal dependency in fMRI sequences has not been fully exploited in existing studies, due to the limited temporal-modeling capacity of the backbone machine learning algorithms and rigid training sample organization strategies upon which the brain decoding methods are built. To address these limitations, we propose a novel method for fine-grain brain state decoding, namely, group deep bidirectional recurrent neural network (Group-DBRNN) model. We first propose a training sample organization strategy that consists of a group-task sample generation module and a multiple-scale random fragment strategy (MRFS) module to collect training samples that contain rich task-relevant brain activity contrast (i.e., the comparison of neural activity patterns between different tasks) and maintain the temporal dependency. We then develop a novel decoding model by replacing the unidirectional RNNs that are widely used in existing brain state decoding studies with bidirectional stacked RNNs to better capture the temporal dependency, and by introducing a multi-task interaction layer (MTIL) module to effectively model the task-relevant brain activity contrast. Our experimental results on the Human Connectome Project task fMRI dataset (7 tasks consisting of 23 task sub-type states) show that the proposed model achieves an average decoding accuracy of 94.7% over the 23 fine-grain sub-type states. Meanwhile, our extensive interpretations of the intermediate features learned in the proposed model via visualizations and quantitative assessments of their discriminability and inter-subject alignment evidence that the proposed model can effectively capture the temporal dependency and task-relevant contrast.


Asunto(s)
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Conectoma/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos
20.
Psychoradiology ; 4: kkad033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333558

RESUMEN

Dementia is an escalating global health challenge, with Alzheimer's disease (AD) at its forefront. Substantial evidence highlights the accumulation of AD-related pathological proteins in specific brain regions and their subsequent dissemination throughout the broader area along the brain network, leading to disruptions in both individual brain regions and their interconnections. Although a comprehensive understanding of the neurodegeneration-brain network link is lacking, it is undeniable that brain networks play a pivotal role in the development and progression of AD. To thoroughly elucidate the intricate network of elements and connections constituting the human brain, the concept of the brain connectome was introduced. Research based on the connectome holds immense potential for revealing the mechanisms underlying disease development, and it has become a prominent topic that has attracted the attention of numerous researchers. In this review, we aim to systematically summarize studies on brain networks within the context of AD, critically analyze the strengths and weaknesses of existing methodologies, and offer novel perspectives and insights, intending to serve as inspiration for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA