Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Front Vet Sci ; 11: 1396053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021407

RESUMEN

The nutritional benefits of mare milk are attracting increasing consumer interest. Limited availability due to low yield poses a challenge for widespread adoption. Although lysine and threonine are often used to enhance protein synthesis and muscle mass in horses, their impact on mare milk yield and nutrient composition remains underexplored. This study investigated the effects of lysine and threonine supplementation on 24 healthy Yili mares, mares at day 30 of lactation, over a 120-day period. The mares were divided into control and three experimental groups (six mares each) under pure grazing conditions. The control group received no amino acid supplementation, while experimental groups received varying daily doses of lysine and threonine: Group I (40 g lysine + 20 g threonine), Group II (60 g lysine + 40 g threonine), and Group III (80 g lysine + 60 g threonine). Supplementation in Group II notably increased milk yield, while Groups I and II showed higher milk fat percentages, and all experimental groups exhibited improved milk protein percentages. Additionally, blood levels of total protein, albumin, triglycerides, and glucose were reduced. Detailed analyses from Group II at peak lactation (day 60) included targeted metabolomics and microbial sequencing of milk, blood, and fecal samples. Amino acid metabolomics assessed amino acid content in mare milk and serum, while 16S rRNA gene sequencing evaluated rectal microbial composition. The results indicated that lysine and threonine supplementation significantly increased levels of threonine and creatine in the blood, and lysine, threonine, glutamine, and alanine in mare milk. Microbial analysis revealed a higher prevalence of certain bacterial families and genera, including Prevotellaceae, p_251_o5, and Rikenellaceae at the family level, and unclassified_p_251_o5, Prevotellaceae_UCG_001, and Rikenellaceae_RC9_gut_group at the genus level. Multi-omics analysis showed positive correlations between specific fecal genera and amino acids in mare milk. For instance, Prevotellaceae_UCG_003, unclassified Bacteroidetes_BS11_gut_group, and Corynebacterium were positively correlated with lysine, while unclassified Prevotellaceae was positively correlated with alanine and threonine, and Unclassified_Bacteroidales_BS11_gut_group was positively correlated with glutamine. In summary, lysine and threonine supplementation in grazing lactating mares enhanced milk production and improved milk protein and fat quality. It is recommended that herders, veterinarians, and technicians consider amino acid content in the diet of lactating mares. The optimal supplementation levels under grazing conditions for Yili horses were determined to be 60 g lysine and 40 g threonine per day. Future research should explore the molecular mechanisms by which these amino acids influence milk protein and lipid synthesis in mare mammary epithelial cells.

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732144

RESUMEN

DNA methylation is a form of epigenetic regulation, having pivotal parts in controlling cellular expansion and expression levels within genes. Although blood DNA methylation has been studied in humans and other species, its prominence in cattle is largely unknown. This study aimed to methodically probe the genomic methylation map of Xinjiang brown (XJB) cattle suffering from bovine respiratory disease (BRD), consequently widening cattle blood methylome ranges. Genome-wide DNA methylation profiling of the XJB blood was investigated through whole-genome bisulfite sequencing (WGBS). Many differentially methylated regions (DMRs) obtained by comparing the cases and controls groups were found within the CG, CHG, and CHH (where H is A, T, or C) sequences (16,765, 7502, and 2656, respectively), encompassing 4334 differentially methylated genes (DMGs). Furthermore, GO/KEGG analyses showed that some DMGs were involved within immune response pathways. Combining WGBS-Seq data and existing RNA-Seq data, we identified 71 significantly differentially methylated (DMGs) and expressed (DEGs) genes (p < 0.05). Next, complementary analyses identified nine DMGs (LTA, STAT3, IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB) that might be involved in the immune response of XJB cattle infected with respiratory diseases. Although further investigations are needed to confirm their exact implication in the involved immune processes, these genes could potentially be used for a marker-assisted selection of animals resistant to BRD. This study also provides new knowledge regarding epigenetic control for the bovine respiratory immune process.


Asunto(s)
Metilación de ADN , Predisposición Genética a la Enfermedad , Bovinos , Animales , Epigénesis Genética , Enfermedades de los Bovinos/genética , Complejo Respiratorio Bovino/genética
3.
Front Genet ; 15: 1371872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680425

RESUMEN

The aim was to investigate the relationship between polymorphisms of gene mutation loci and reproductive traits in local sheep breeds (Duolang Sheep) and introduced sheep breeds (Suffolk, Hu Sheep) in Xinjiang to provide new molecular markers for the selection and breeding of high fecundity sheep. The expression pattern of typing successful genes in sheep tissues was investigated by RT-qPCR technology, providing primary data for subsequent verification of gene function. The 26 mutation loci of WWC2, ARHGEF9, SLK, GAB3, and FSHR genes were typed using KASP. Association analyses were performed using SPSS 25.0, and the typing results showed that five genes with six loci, WWC2 (g.14962207 C>T), ARHGEF9 (g.48271079 C>A), SLK (g.27107842 T>C, g.27108855 G>A), GAB3 (g.86134602 G>A), and FSHR (g.80789180 T>G) were successfully typed. The results of the association analyses showed that WWC2 (g.14962207 C>T), SLK (g.27108855 G>A), ARHGEF9 (g.48271079 C>A), and FSHR (g.80789180 T>G) caused significant or extremely significant effects on the litter size in Duolang, Suffolk and Hu Sheep populations. The expression distribution pattern of the five genes in 12 sheep reproduction-related tissues was examined by RT-qPCR. The results showed that the expression of the SLK gene in the uterus, the FSHR gene in the ovary, and the ARHGEF9 gene in hypothalamic-pituitary-gonadal axis-related tissues were significantly higher than in the tissues of other parts of the sheep. WWC2 and GAB3 genes were highly expressed both in reproductive organs and visceral tissues. In summary, the WWC2 (g.14962207 C>T), SLK (g.27108855 G>A), ARHGEF9 (g.48271079 C>A), and FSHR (g.80789180 T>G) loci can be used as potential molecular markers for detecting differences in reproductive performance in sheep. Due to variations in typing results, the SLK (g.27107842 T>C) and GAB3 (g.86134602 G>A) loci need further validation.

4.
Anim Biosci ; 37(10): 1712-1725, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38665071

RESUMEN

OBJECTIVE: The objective of this study was to investigate the effects of prolactin (PRL) on the proliferation and apoptosis of ovine ovarian granulosa cells (GCs) and the secretion of estrogen (E2) and progesterone (P4), as well as to explore the effects of PRL on related genes and proteins. METHODS: We isolated ovarian GCs from 1-year-old small-tail Han sheep and identified PRL receptor (PRLR) on ovaries and follicle stimulating hormone receptor (FSHR) on ovarian GCs, respectively, using immunohistochemistry. PRL (0, 0.05, 0.50, 5.00 µg/mL) were added to GCs in vitro along with FSH, cell proliferation was measured by cell counting Kit-8 (CCK-8) and apoptosis by flow cytometry. The measurement of E2 and P4 content by enzyme-linked immunosorbent assays after 48 h and 72 h. The expression of functional genes and proteins was identified by real-time quantitative polymerase chain reaction (RTqPCR) and Western-blot after 48 h. RESULTS: PRLR was expressed in both follicular GCs and corpus luteum, whereas FSHR was expressed specifically. The proliferative activity was lower on day 1 while higher on day 4 and day 5. The apoptosis rate of GCs in the 0.05 µg/mL group was significantly higher than that in the control group after treatment with PRL for 24 h (p<0.05). Compared with the control group, the secretion of E2 in GCs was reduced significantly (p<0.05) in PRL treatment for 48 h and 72 h, while the secretion of P4 was significantly increased (p<0.05). The mRNA expression levels of PRLR, FSHR, LHR, CYP11A1, HSD3B7, and STAR were significantly higher than those in the control group (p<0.01), and the relative abundance of BCL2 in all PRL group were increased after PRL treatment. CONCLUSION: PRL promoted the proliferation of GCs and supraphysiological concentrations inhibited apoptosis caused by down-regulation of BAX and up-regulation of BCL2. PRL inhibited E2 by down-regulating CYP19A1 and promoted P4 by up-regulating CYP11A1, STAR, and HSD3B7.

5.
Front Genet ; 15: 1372841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482380

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2023.1348329.].

6.
Genes (Basel) ; 15(2)2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38397224

RESUMEN

In a past study, the team used specific-locus amplified fragment sequencing (SLAF sequencing) to detect single-nucleotide polymorphisms (SNPs) contributing to the differences in lambing numbers in Xinjiang sheep. This study verified the correlation between the COIL gene and lambing number characters in sheep and explored its possible mechanism of action. In this study, three SNPs in the COIL gene, namely COILSNP1 (rs7321466), COILSNP2 (rs7314134), and COILSNP3 (rs7321563), were explored in terms of their possible mechanism of action. A tissue expression profiling analysis revealed that the COIL gene was significantly more expressed in the uterus and ovaries than in other tissues (p < 0.05), whereas an association analysis revealed that the number of lambs born was significantly different among individuals with different genotypes of this COILSNP1 (p < 0.05). The Cell Counting Kit-8(CCK-8) revealed that the overexpression of the COIL gene significantly increased the proliferation of mouse ovarian fibroblasts and sheep fibroblasts (p < 0.05). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) revealed that the overexpression of the COIL gene significantly increased the activity of sheep fibroblasts (p < 0.01) and mouse ovarian fibroblasts (p < 0.05). The overexpression of the COIL gene affected the biogenesis pathway of spliceosomal U snRNPs by validating protein network connections. This activity affects ovulation, embryonic development, and changes in lambing size in sheep.


Asunto(s)
Proteínas Nucleares , Ovulación , Parto , Ovinos , Animales , Femenino , Ratones , Embarazo , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Proteínas Nucleares/genética
7.
J Adv Res ; 57: 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37137429

RESUMEN

INTRODUCTION: Fine-wool sheep are the most common breed used by the wool industry worldwide. Fine-wool sheep have over a three-fold higher follicle density and a 50% smaller fiber diameter than coarse-wool sheep. OBJECTIVES: This study aims to clarify the underlying genetic basis for the denser and finer wool phenotype in fine-wool breeds. METHOD: Whole-genome sequences of 140 samples, Ovine HD630K SNP array data of 385 samples, including fine, semi-fine, and coarse wool sheep, as well as skin transcriptomes of nine samples were integrated for genomic selection signature analysis. RESULTS: Two loci at keratin 74 (KRT74) and ectodysplasin receptor (EDAR) were revealed. Fine-scale analysis in 250 fine/semi-fine and 198 coarse wool sheep narrowed this association to one C/A missense variant of KRT74 (OAR3:133,486,008, P = 1.02E-67) and one T/C SNP in the regulatory region upstream of EDAR (OAR3:61,927,840, P = 2.50E-43). Cellular over-expression and ovine skin section staining assays confirmed that C-KRT74 activated the KRT74 protein and specifically enlarged cell size at the Huxley's layer of the inner root sheath (P < 0.01). This structure enhancement shapes the growing hair shaft into the finer wool than the wild type. Luciferase assays validated that the C-to-T mutation upregulated EDAR mRNA expression via a newly created SOX2 binding site and potentially led to the formation of more hair placodes. CONCLUSIONS: Two functional mutations driving finer and denser wool production were characterized and offered new targets for genetic breeding during wool sheep selection. This study not only provides a theoretical basis for future selection of fine wool sheep breeds but also contributes to improving the value of wool commodities.


Asunto(s)
Receptor Edar , Queratinas Tipo II , Mutación Missense , Lana , Animales , Receptor Edar/genética , Ovinos/genética , Queratinas Tipo II/genética
8.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003385

RESUMEN

Cardiovascular diseases are a leading cause of worldwide mortality, and exosomes have recently gained attention as key mediators of intercellular communication in these diseases. Exosomes are double-layered lipid vesicles that can carry biomolecules such as miRNAs, lncRNAs, and circRNAs, and the content of exosomes is dependent on the cell they originated from. They can be involved in the pathophysiological processes of cardiovascular diseases and hold potential as diagnostic and monitoring tools. Exosomes mediate intercellular communication, stimulate or inhibit the activity of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. Exosomes can be released from various types of cells, including endothelial cells, smooth muscle cells, cardiomyocytes, fibroblasts, platelets, adipocytes, immune cells, and stem cells. In this review, we highlight the communication between different cell-derived exosomes and cardiovascular cells, with a focus on the roles of RNAs. This provides new insights for further exploring targeted therapies in the clinical management of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Exosomas , Humanos , Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , ARN no Traducido/metabolismo , Comunicación Celular/genética , Miocitos Cardíacos/metabolismo , Exosomas/metabolismo
9.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37833983

RESUMEN

Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.


Asunto(s)
ARN Largo no Codificante , ARN no Traducido , Animales , ARN no Traducido/genética , Músculo Esquelético , Desarrollo de Músculos/genética
10.
Adv Mater ; : e2305924, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698463

RESUMEN

Utilizing renewable biomass as a substitute for fossil resources to produce high-value chemicals with a low carbon footprint is an effective strategy for achieving a carbon-neutral society. Production of chemicals via single-atom catalysis is an attractive proposition due to its remarkable selectivity and high atomic efficiency. In this work, a supramolecular-controlled pyrolysis strategy is employed to fabricate a palladium single-atom (Pd1 /BNC) catalyst with B-doped Pd-Nx atomic configuration. Owing to the meticulously tailored local coordination microenvironment, the as-synthesized Pd1 /BNC catalyst exhibits remarkable conversion capability for a wide range of biomass-derived aldehydes/ketones. Thorough characterizations and density functional theory calculations reveal that the highly polar metal-N-B site, formed between the central Pd single atom and its adjacent N and B atoms, promotes hydrogen activation from the donor (reductants) and hydrogen transfer to the acceptor (C═O group), consequently leading to exceptional selectivity. This system can be further extended to directly synthesize various aromatic and furonic amines from renewable lignocellulosic biomass, with their greenhouse gas emission potentials being negative in comparison to those of fossil-fuel resource-based amines. This research presents a highly effective and sustainable methodology for constructing C─N bonds, enabling the production of a diverse array of amines from carbon-neutral biomass resources.

11.
Front Plant Sci ; 14: 1164363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448866

RESUMEN

Several members of family Urticaceae are mainly found in the temperate and subtropical zones of the Northern Hemisphere and are important medicinal plants. Among them, Urtica dioica L. (Urticaceae) is an annual or perennial herb that has been used for feeding and medicinal purposes since long time and is the most exploited species of Urticaceae. Recently, it has received attention to be used as animal feed, as its fresh leaves fed to animals in moderate, dried, and other forms. This review details the advantages of U. dioica as an alternative feed in terms of germplasm specificity, nutritional composition, and feed application status. Its roots, stems, leaves, and seeds are rich in active ingredients. It has also been found to have anticancer effects through antioxidant action and promotion of apoptosis of cancer cells. In shady conditions, U. dioica is highly adaptable while under stressful conditions of drought; it also reduces light absorption and ensures carbon assimilation through light energy conversion efficiency. Therefore, it can be added to animal diets as a suitable feed to reduce costs and improve economic efficiency. This paper investigates the feasibility of using U. dioica as a feed and systematically presents the progress of research and exploitation of U. dioica.

12.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373126

RESUMEN

Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Adipogénesis/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Adipocitos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
13.
Int J Genomics ; 2023: 9934684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180342

RESUMEN

Bovine respiratory disease (BRD) is one of the major health issues in the cattle industry, resulting in significant financial crises globally. There is currently no good treatment, and cattle are made resistant to pneumonia through disease-resistant breeding. The serial blood samples from six Xinjiang brown (XJB) calves were collected for the RNA sequencing (RNA-seq). The obtained six samples were grouped into two groups, in each group as infected with BRD and healthy calves, respectively. In our study, the differential expression mRNAs were detected by using RNA-seq and constructed a protein-protein interaction (PPI) network related to the immunity in cattle. The key genes were identified by protein interaction network analysis, and the results from RNA-seq were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 488 differentially expressed (DE) mRNAs were identified. Importantly, the enrichment analysis of these identified DEGs classified them as mainly enriched in the regulation and immune response processes. The 16 hub genes were found to be related to immune pathways categorized by PPIs analysis. Results revealed that many hub genes were related to the immune response to respiratory disease. These results will provide the basis for a better understanding of the molecular mechanism of bovine resistance to BRD.

14.
Genes (Basel) ; 14(5)2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-37239441

RESUMEN

Animal genotyping by means of genome-wide association studies is important for connecting phenotypes of interest with their underlying genetics in livestock. However, the use of whole genome sequencing to investigate chest circumference (CC) in donkeys has rarely been reported. We aimed to use the genome-wide association study approach to detect significant single nucleotide polymorphisms (SNPs) and key genes associated with chest circumference traits in Xinjiang donkeys. We assessed 112 Xinjiang donkeys in this study. The chest circumference of each was measured 2 h before milking. We re-sequenced blood samples from the Xinjiang donkeys, and genome-wide association study analyses were performed using a mixed model with the PLINK, GEMMA, and REGENIE programs. We tested 38 donkeys for candidate SNPs for genome-wide association study using three software programs. Additionally, 18 SNP markers reached genome-wide significance (p < 1.61 × 10-9). On the basis of these, 41 genes were identified. Previously proposed candidate genes for CC traits were supported by this study, including NFATC2 (Nuclear Factor of Activated T Cells 2), PROP1 (PROP Paired-Like Homeobox 1), UBB (Ubiquitin B), and HAND2 (Heart and Neural Crest Derivatives Expressed 2). These promising candidates provide a valuable resource for validating potential meat production genes and will facilitate the development of high-yielding Xinjiang donkey breeds through marker-assisted selection or gene editing.


Asunto(s)
Equidae , Estudio de Asociación del Genoma Completo , Animales , Equidae/genética , Fenotipo , Genoma , Factores de Transcripción , Tecnología
15.
Environ Sci Pollut Res Int ; 30(29): 73913-73927, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37204572

RESUMEN

Risk assessment for landslide dams is very important to avoid unanticipated landslide failure and calamity. Recognition of the risk of landslide dams associated with changing influencing factors is to identify the risk grade and provide early warning of oncoming failure, while quantitative risk analysis of landslide dams due to many influencing factors changing in spatiotemporal domain is currently lacking. We applied the model to analyze the risk level of the Tangjiashan landslide dam caused by the Wenchuan Ms 8.0 earthquake. The risk evaluation, obtained according to the analysis of the influencing factors located in the risk assessment grade criteria, clearly shows that the risk reaches a higher level at that moment. Our analysis shows that the risk level of landslide dams can be quantitatively analyzed with our assessment method. Our results suggest that the risk assessment system can be an effective measure to dynamically predict the risk level and provide a sufficient early warning of the oncoming hazard by analyzing the variables of influencing factors at different times.


Asunto(s)
Terremotos , Deslizamientos de Tierra , China , Medición de Riesgo/métodos
16.
Anim Biotechnol ; 34(9): 4680-4686, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37093180

RESUMEN

Copy number variation (CNV) is an important member of genetic structural variation that exists widely in animal genomes and is between 50 bp and several Mb in length and widely used in research's of animal genetics and breeding. ZNF679 is an important transcription factor, which has been found association with diseases in the human genome many times. This gene has also been found to be associated with cattle growth traits in previous re-sequencing studies. We tested the CNVs of the ZNF679 gene in 809 individuals from 7 Chinese cattle breeds and tested the association between the CNVs and growth traits in 552 individuals from 5 breeds. The results demonstrated the correlation the correlation between the CNVs of the ZNF679 gene and some Chinese cattle (QC cattle and XN cattle) growth traits. To sum up, this study indicated that ZNF679-CNVs can be used as a candidate gene for molecular genetic marker-assisted selection breeding for cattle growth traits to contribute to the development of genetic improvement of Chinese cattle.


Asunto(s)
Variaciones en el Número de Copia de ADN , Regulación de la Expresión Génica , Animales , Bovinos/genética , Humanos , Variaciones en el Número de Copia de ADN/genética , Fenotipo , Peso Corporal/genética
17.
Front Vet Sci ; 10: 1102186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777669

RESUMEN

Introduction: The gut microbiomes of equine are plentiful and intricate, which plays an important part in the growth. However, there is a relative lack of information on the microbial diversity in the pony's gut. Methods: In this article, 118 fecal samples from DeBa pony, NiQi pony and GuZh horse were studied by 16S rRNA amplicon sequencing. Results: Diversity analysis was used to determine the difference of gut microbiota composition among different breeds. Alpha diversity analysis showed that the gut microbiota of NiQi ponies were abundant and various. Beta diversity analysis showed that the microorganisms constitution of DeBa ponies was more similar to that of NiQi ponies. LDA Effect Size (LEfSe) analysis result that the microorganism biomarkers for NiQi pony at the genus level were Phascolarctobacterium, Paludibacter, and Fibrobacter; the bacterial biomarker for DeBa pony was Streptococcus and Prevotella; and the bacterial biomarkers for GuZh horses was Treponema, Treponema Mogibacterium, Adlercreutzia, and Blautia. The correlation analysis between genera with >1% abundance and horse height found that Streptococcus (P < 0.01), Treponema (P < 0.01), Coprococcus (P < 0.01), Prevotella (P < 0.01), Phascolarctobacterium (P < 0.01), and Mogibacterium (P < 0.01) were significantly associated with horses' height. The functional prediction results indicated that DeBa pony have a microbiota functional more similar to NiQi pony. Discussion: For the first time, our results announce the species composition and structure of the gut microbiota in Chinese ponies. At the same time, our results can provide theoretical reference for further understanding the healthy breeding, feeding management and disease prevention of horses.

18.
Environ Sci Technol ; 57(2): 1157-1166, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36602942

RESUMEN

Harmful algae blooms (HABs) frequently occur all over the world and cause great harm to the environment, human health, and aquatic ecosystems. However, owing to their great growth rate and large nutrient intake capacity, algae can enrich a large amount of carbon (CO2) and nutritional elements (N and P) in their biomass. Thus, this could be applied as a robust approach to battle global warming and water eutrophication if the harmful algae biomass was effectively harvested and utilized. Herein, we propose a thermochemical approach to convert algae biomass into a nitrogen-doped electrocatalyst for CO2 reduction. The as-synthesized carbon catalyst exhibits a favorable electrochemical CO2 reduction activity. The key drivers of the environmental impacts in the thermochemical conversion approach with a comparison with the commonly used landfilling approach are identified with life cycle assessment. The former presents much lower environmental burdens in terms of impacts such as freshwater/terrestrial ecotoxicity and human toxicity than the latter. Moreover, if the thermochemical conversion process was successfully applied for biomass conversion worldwide, 2.17 × 108 tons of CO2-eq, 8.42 × 106 tons of N, and 1.21 × 106 tons of P could be removed from the global carbon and other element cycles. Meanwhile, the thermochemical approach is also similar to landfilling in terms of costs. The results from this work provide a brand-new perspective for achieving twofold CO2 utilization and efficiently battling harmful algae blooms.


Asunto(s)
Dióxido de Carbono , Ecosistema , Humanos , Biomasa , Floraciones de Algas Nocivas , Carbono
19.
Anim Biotechnol ; 34(4): 900-910, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34865605

RESUMEN

LncRNAs have recently received special attention due to their critical role in many important biological processes. There are few reports on its regulatory function in sheep fat deposition. In this study, two sheep populations with different tail types in Xinjiang, Bashibai sheep (fat-tailed) and the hybrid population of Bashibai sheep and wild argali (small-tailed) were selected for whole transcriptome sequencing from their tail tissues. First, 728 differentially expressed LncRNAs of tail fat between Bashibai and F2 sheep were identified by RNA-seq. Second, the tissue expression profile and relative expression difference between Bashibai and F2 sheep of 2 of 728 DE LncRNAs were analyzed by RT-PCR. LncRNA-MSTRG.24995 was highly expressed in tail fat, while lncRNA-MSTRG.36913 was highly expressed in subcutaneous fat. In addition, the expressions of LncRNA-MSTRG.24995 and LncRNA-MSTRG.36913 in tail fat of F2 sheep were significantly lower than that of Bashibai sheep, while those patterns in longissimus dorsi, quadriceps femoris and rumen were reversed. Third, the expression pattern of target genes FASN and THRSP in each tissue was similar with that of corresponding LncRNAs. The LncRNA-MSTRG.24995 directly affects tail fat deposition by FASN gene, while the LncRNA-MSTRG.36913 indirectly affects that by THRSP gene. This will help us to understand molecular mechanism of fat tail deposition from transcriptomic perspectives.


Asunto(s)
ARN Largo no Codificante , Animales , Ovinos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cola (estructura animal) , Perfilación de la Expresión Génica/veterinaria , Transcriptoma/genética , RNA-Seq
20.
Anim Biotechnol ; 34(7): 2724-2735, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36007548

RESUMEN

Donkey milk has high nutritional and medicinal value, but there are few researches in donkey milk traits, especially on genome. The whole lactation of 89 donkeys was recorded and it was found that Xinjiang donkey had good lactation performance while great differences among individuals. In our previous study, four genes including LGALS2, NUMB, ADCY8 and CA8 were identified as milk-associated with Chinese Kazakh house, based on Equine 670k Chip genomic analysis. And then 15 SNPs of the four key genes were conducted for genotyping in Xinjiang donkey in this study, one of Chinese indigenous breed, 14 SNPs were successful classified. And those SNPs were correlation analysis with milk yield of Xinjiang donkeys. The results showed that NUMB g.46709914T > G was significantly correlated with daily milk yield of Xinjiang donkey in the early, middle, and late periods, while ADCY8 g.48366302T > C, CA8 g.89567442T > G and CA8 g.89598328T > A were significantly correlated with lactation in the late periods. These results indicate that NUMB g.46709914T > G can be as markers of candidate genes for lactating traits in donkeys, SNPs of ADCY8 and CA8 as potential. Our findings will not only help confirm key genes for donkey milk traits, but also provide future for genomic selection in donkeys.


Asunto(s)
Equidae , Leche , Femenino , Caballos , Animales , Equidae/genética , Lactancia/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA