Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Carbohydr Polym ; 347: 122716, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39486950

RESUMEN

The incorporation of biomass fillers into poly(lactic acid) (PLA) enantiomeric blends offers a novel strategy to promote stereocomplex (SC) crystallization while preserving the biodegradability of PLA. In this study, poly(vinyl acetate)-modified cellulose nanocrystals (CNC-PVAc) were prepared through a one-pot reaction and employed as nanofillers for PLA. The results indicate that CNC-PVAc enhances the crystallization of stereocomplex crystallites (SCs) while inhibiting the formation of homocrystallites (HCs). The selective nucleation induced by CNC-PVAc is closely associated with the enrichment of PVAc chains at the interface between CNCs and the PLA matrix. Due to the good miscibility between PVAc and PLA, PVAc enhances chain segment motility and suppresses the homocrystallization of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA), thereby facilitating the pairing and crystallization of PLA enantiomers into SCs. Furthermore, the nucleation and reinforcing effects of CNC-PVAc play a synergistic role in determining the properties of PLA based nanocomposites. The fabricated nanocomposites exhibit significant improvements in yield strength, Young's modulus, and heat distortion resistance, while maintaining the original biocompatibility and degradability of PLA. Overall, this study elucidates the nucleation mechanism of polymer-grafted CNCs on PLA SCs, and expanding the application potential of biobased fillers in biodegradable polymers.

2.
BMC Infect Dis ; 24(1): 1016, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304798

RESUMEN

BACKGROUND: Nocardia, a rare but potentially fatal pathogen, can induce systemic infections with diverse manifestations. This study aimed to investigate the tissue and organ damage caused by Nocardia farcinica (N. farcinica) in mice via different infection routes, evaluate the resulting host immune responses, and assess its invasiveness in brain tissue. METHODS: BALB/c mice were infected with N. farcinica through intranasal, intraperitoneal, and intravenous routes (doses: 1 × 10^8, 1 × 10^7, 1 × 10^7 CFU in 50 µl PBS). Over a 7-day period, body temperature, weight, and mortality were monitored, and samples were collected for histopathological analysis and bacterial load assessment. Serum was isolated for cytokine detection via ELISA. For RNA-seq analysis, mice were infected with 1 × 107 CFU through three infection routes, after which brain tissue was harvested. RESULTS: Intraperitoneal and intravenous N. farcinica infections caused significant clinical symptoms, mortality, and neural disruption in mice, resulting in severe systemic infection. Conversely, intranasal infection primarily affected the lungs without causing significant damage to other organs. Intraperitoneal and intravenous infections significantly increased serum cytokines, particularly TNF-α and IFN-γ. RNA-seq analysis of brains from intravenously infected mice revealed significant differential gene expression, whereas the intranasal and intraperitoneal routes showed limited differences (only three genes). The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the intravenous group were primarily related to immune processes. CONCLUSION: The study demonstrated that intravenous N. farcinica infection induces significant clinical symptoms, triggers an inflammatory response, damages multiple organs, and leads to systemic infections.


Asunto(s)
Encéfalo , Citocinas , Ratones Endogámicos BALB C , Nocardiosis , Nocardia , Animales , Nocardia/genética , Nocardiosis/microbiología , Nocardiosis/inmunología , Ratones , Citocinas/sangre , Femenino , Encéfalo/microbiología , Encéfalo/patología , Pulmón/microbiología , Pulmón/patología , Modelos Animales de Enfermedad , Carga Bacteriana
3.
Plants (Basel) ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124174

RESUMEN

This study aimed to investigate the effects of applying arbuscular mycorrhizal fungi (AMF) on maize root growth and yield formation under different soil conditions. This study was conducted under sandy soil (S) and saline-alkali soil (Y), with treatments of AMF application (AM) and no AMF application (CK). The root characteristics, yield, and quality of maize were measured. High-throughput sequencing technology was employed to assess the impact of AMF on the soil microbial community structure, and the correlation between soil microbes and soil physicochemical properties was elucidated. The results show that under both sandy and saline-alkali soil conditions, AMF application significantly enhanced maize root growth, yield, grain quality, and soil available nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents compared to the CK treatment. Soil microbial Alpha diversity analysis indicated that AMF application effectively increased soil microbial diversity and richness. Principal coordinate analysis (PCoA) and microbial community structure analysis revealed significant differences in bacterial communities between AM treatment in sandy soil (SAM) and CK in sandy soil (SCK), and significant differences in both bacterial and fungal communities between AM treatment in saline-alkali soil (YAM) and CK in saline-alkali soil (YCK). Furthermore, significant correlations between microbial communities and soil physicochemical properties were found, such as AN, AP, AK, soil salinity (SS), and organic matter (OM) content. AMF application had a greater impact on bacterial communities than on fungal communities. This study demonstrated that the use of AMF as a bio-fungal fertilizer was effective in improving spring maize yields, especially in terms of yield increase and quality stability in sandy and saline soils, thereby contributing to safe and sustainable cropping practices.

4.
Neuroimage ; 299: 120801, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173691

RESUMEN

OBJECTIVE: It is important to discriminate different headaches in clinical practice, and neurocognitive biomarkers may serve as objective tools. Several reports have suggested potential cognitive impairment for primary headaches, whereas cognitions within specific domains remain elusive, e.g., emotional processing. In this study, we aimed to characterize processing of facial expressions in migraine and tension-type headache (TTH) by analyzing expression-related visual mismatch negativity (EMMN) and explored whether their processing patterns were distinct. METHODS: Altogether, 73 headache patients (20 migraine with aura (MA), 28 migraine without aura (MwoA), 25 TTH) and 27 age-matched healthy controls were recruited. After a battery of mood/neuropsychological evaluations, an expression-related oddball paradigm containing multiple models of neutral, happy and sad faces was used to investigate automatic emotional processing. RESULTS: We observed cognitive impairment in all headache patients, especially in attention/execution subdomains, but no discrepancy existed among different headaches. Although analyses of P1/N170 did not reach significant levels, amplitude of early and late EMMN was markedly diminished in MA and MwoA compared with controls and TTH, regardless of happy or sad expression. Moreover, sad EMMN was larger (more negative) than happy EMMN only in controls, while not in all headache groups. CONCLUSIONS: Our findings implied that migraine, rather than TTH, might lead to more severe impairment of automatic emotional processing, which was manifested as no observable EMMN elicitation and disappearance of negative bias effect. The EMMN component could assist in discrimination of migraine from TTH and diagnosis of undefined headaches, and its availability needed further validations.


Asunto(s)
Electroencefalografía , Emociones , Expresión Facial , Cefalea de Tipo Tensional , Humanos , Cefalea de Tipo Tensional/fisiopatología , Femenino , Masculino , Adulto , Emociones/fisiología , Electroencefalografía/métodos , Persona de Mediana Edad , Trastornos Migrañosos/fisiopatología , Adulto Joven , Reconocimiento Facial/fisiología , Migraña con Aura/fisiopatología
5.
Toxicology ; 506: 153861, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866128

RESUMEN

Acrolein (ACR), an unsaturated, highly reactive aldehyde, is a widespread environmental toxin. ACR exerts permanent and irreversible side effects on ovarian functions. Granulosa cells play a crucial role in supporting ovarian function. Thus, in this study, we investigated the toxicity effects of granulosa cells induced by ACR. Following treatment with varying ACR concentrations (0, 12.5, 25, 50, and 100 µM), we observed that ACR exposure induced reactive oxygen species accumulation, mitochondrial energy metabolism disorder, and apoptosis in KGN cells (a human ovarian granulosa cell line) in a dose-dependent manner. In addition, mitochondrial biogenesis in KGN cells displayed biphasic changes after ACR exposure, with activation at a low ACR dose (12.5 µM), but inhibition at higher ACR doses (≥50 µM). SIRT1/PGC-1α-mediated mitochondrial biogenesis is crucial for maintaining intracellular mitochondrial homeostasis and cellular function. The inhibition/activation of the SIRT1/PGC-1α pathway in KGN cells validated its role in ACR-induced damage. The results indicated that the inhibition of the SIRT1/PGC-1α pathway aggravated ACR-induced cell damage, whereas its activation partially counteracted ACR-induced cell damage. This study attempted to uncover a novel mechanism of ACR-induced ovarian toxicity so as to provide an effective treatment option for safeguarding female reproductive health from the adverse effects of ACR.


Asunto(s)
Acroleína , Apoptosis , Metabolismo Energético , Células de la Granulosa , Mitocondrias , Especies Reactivas de Oxígeno , Sirtuina 1 , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Femenino , Humanos , Apoptosis/efectos de los fármacos , Acroleína/toxicidad , Metabolismo Energético/efectos de los fármacos , Sirtuina 1/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Relación Dosis-Respuesta a Droga
6.
Sci Rep ; 14(1): 10873, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740918

RESUMEN

In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.


Asunto(s)
Adenocarcinoma del Pulmón , Anoicis , Antígeno B7-H1 , Inmunoterapia , Neoplasias Pulmonares , Receptor de Muerte Celular Programada 1 , RNA-Seq , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Anoicis/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Pronóstico , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Análisis de la Célula Individual , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Biomarcadores de Tumor/genética
7.
Heliyon ; 10(6): e27684, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524592

RESUMEN

Background: Preoperative chemotherapy alone might be a good alternative to preoperative chemoradiotherapy for patients with locally advanced rectal cancer, yet long-term real-world data from the same cohort are lacking. Methods: Patients diagnosed with stage II-III rectal adenocarcinoma from 2011 to 2015 were randomly sampled from the SEER-Plus database to evaluate the superiority of preoperative chemoradiotherapy versus preoperative chemotherapy alone. Findings: A total of 1314 eligible patients were enrolled, with a median follow-up of 74.0 months. At 3-year follow-up, neither overall survival (OS) nor cancer-specific survival (CSS) was significantly different between the two treatment groups. At 5-year follow-up, CSS was similar across groups (HR 0.768, 95% CI 0.532-1.108; P = 0.156), but the 5-year OS was significantly better in the preoperative chemoradiotherapy group than in the preoperative chemotherapy group (HR 0.682, 95% CI 0.538-0.866; P = 0.002). Besides, the landmark analysis indicated a direct contrast in the CSS within 3 years (HR 1.101, 95% CI 0.598-2.029; P = 0.756) versus that at 3-5 years (HR 0.597, 95% CI 0.377-0.948; P = 0.027). The landmark analysis also showed directly contrasting OS outcomes within 3 years (HR 0.761, 95% CI 0.533-1.086; P = 0.130) versus those at 3-5 years (HR 0.621, 95% CI 0.451-0.857; P = 0.003). Interpretation: In patients with locally advanced rectal cancer under real-world treatment practices, the addition of preoperative radiotherapy to chemotherapy improves survival outcomes at 3-5 years' follow-up but not at 3-year follow-up.

8.
BMC Med ; 22(1): 32, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281920

RESUMEN

BACKGROUND: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. METHODS: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. RESULTS: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. CONCLUSIONS: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. FUNDING: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.


Asunto(s)
Diabetes Gestacional , Hipertensión Inducida en el Embarazo , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Índice de Masa Corporal , Cesárea , Hipertensión Inducida en el Embarazo/epidemiología , Preeclampsia/epidemiología , Análisis de la Aleatorización Mendeliana
9.
Free Radic Biol Med ; 212: 271-283, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38169213

RESUMEN

Macrophage dysfunction is a significant contributor to more than 70 % of sepsis-related deaths, specifically secondary bacterial infections, during the immunosuppression stage of sepsis. Nevertheless, the role of Rab26 in this context remains unclear. In this study, we observed a substantial decrease in Rab26 expression in macrophages during the immunosuppressive phase of sepsis, which was also found to be suppressed by high extracellular levels of HMGB1. During the progression of sepsis, Rab26 deficiency promotes a polarization shift from the M1 to the M2-like phenotype in macrophages, rendering them susceptible to ferroptosis. Subsequent experimentation has revealed that Rab26 deficiency facilitates the degradation of GPX4, thereby aggravating macrophage ferroptosis through the upregulation of levels of lipid ROS, MDA, and ferrous iron induced by RSL3, a ferroptosis inducer. Additionally, Rab26-deficient mice in the immunosuppressed phase of sepsis exhibit heightened susceptibility to secondary infections, leading to exacerbated lung tissue damage and increased mortality rate. Overall, these findings indicate that Rab26 plays a crucial role in sepsis-induced macrophage immunosuppression by regulating macrophage ferroptosis and polarization. Hence, it represents a potential novel target for sepsis therapy.


Asunto(s)
Ferroptosis , Sepsis , Animales , Ratones , Ferroptosis/genética , Terapia de Inmunosupresión , Sepsis/genética , Inmunosupresores , Macrófagos
10.
Heliyon ; 10(1): e23634, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187281

RESUMEN

Background: Airway epithelial cells play important roles in allergic asthma. Transient receptor potential melastatin-related 2 (TRPM2) and oxidized Ca2+/calmodulin-dependent protein kinase Ⅱ (ox-CaMKⅡ) participate in the airway inflammation. This study aimed to analyze the effects of TRPM2 on ox-CaMKⅡ in the airway epithelial cells during allergic asthma. Methods: BEAS-2B cells were treated with different dose of IL-13 (0, 5, 10, 20 ng/mL) for 24 h to analyze the changes of TRPM2 and ox-CaMKⅡ protein. Cells expressing different level of TRPM2 were obtained by transfection of TRPM2 siRNA or TRPM2-short cDNA. The transfected cells were treated with 10 ng/mL of IL-13 to analyze the effects of TRPM2 on the ox-CaMKⅡ. A CaMKⅡ inhibitor KN-93 was used to confirm the effects of TRPM2 on levels of ox-CaMKⅡ, p-MEK and p-ERK in the IL-13-treated BEAS-2B cells. Wild-type (WT) mice and TRPM2-knockout (TRPM2-/-) mice were induced by ovalbumin (OVA) to compare the differences of inflammation, levels of ox-CaMKII, p-MEK and p-ERK in airways. Results: Cell viability was clearly decreased by the 20 ng/mL of IL-13. The levels of TRPM2 and ox-CaMKII protein in cells were increased with increasing doses of IL-13. Transfection of TRPM2 siRNA or TRPM2-short cDNA respectively decreased or increased the levels of ox-CaMKⅡ in the IL-13-stimulated cells. The results of KN-93 treatment were similar to the results of TRPM2 siRNA transfection, that the levels of ox-CaMKⅡ, p-MEK and p-ERK were significantly decreased in the IL-13-treated cells. Compared with the OVA-induced WT mice, levels of inflammation, ox-CaMKⅡ, p-MEK and p-ERK in the airways were significantly weakened in the OVA-induced TRPM2-/- mice. Conclusions: TRPM2 plays a vital role in regulating ox-CaMKⅡ in airway epithelial cells during allergic asthma.

11.
Acta Pharmacol Sin ; 45(1): 23-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644131

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Animales , Humanos , Volumen Sistólico/fisiología , Comorbilidad , Descubrimiento de Drogas
12.
Small Methods ; 8(2): e2300223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37330642

RESUMEN

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

13.
Pharmaceutics ; 15(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38140096

RESUMEN

Polo-like protein kinase 1 (PLK1) plays a key role in lung cancer cell mitosis. The knockout of PLK1 gene by the CRISPR-Cas9 system can effectively inhibit the proliferation of tumor cells, but there is no suitable vector for in vivo delivery. In this study, CRISPR-Cas9 gene knockout plasmids encoding sgRNA, Cas9 and green fluorescent protein were constructed. Then, the plasmids were packaged with liposome (Lip) and cholesterol-modified Antheraea pernyi silk fibroin (CASF) to obtain the CASF/Lip/pDNA ternary complex. The CASF/Lip/pDNA complex was transfected into lung cancer cells A549 to investigate the transfection efficiency, the PLK1 gene knockout effect and the inhibitory effect on lung cancer cells. The results showed that the transfection efficiency of the CASF/Lip/pDNA complex was significantly higher than that of the Lip/pDNA binary complex, and the expression of PLK1 in cells transfected with CASF/Lip/pDNA complexes was significantly lower than that in cells transfected with Lip/pDNA complexes. The CASF/Lip/pDNA complex significantly increased the apoptosis rate and decreased the proliferation activity of lung cancer cells compared with Lip/pDNA complexes. The cytotoxicity of the complexes was evaluated by coculture with the human bronchial epithelial cells BEAS2B. The results showed that CASF/Lip/pDNA complexes exhibited lower cytotoxicity than Lip/pDNA complexes. The fibroin-modified liposome/PLK1 gene knockout system not only effectively inhibited the growth of lung cancer cells but also showed no obvious toxicity to normal cells, showing potential for clinical application in lung cancer therapy.

14.
BMC Pulm Med ; 23(1): 422, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919667

RESUMEN

BACKGROUND: Angiotensin (Ang)-(1-7) can reduce airway inflammation and airway remodeling in allergic asthma. Autophagy-related 5 (ATG5) has attracted wide attentions in asthma. However, the effects of Ang-(1-7) on ATG5-mediated autophagy in allergic asthma are unclear. METHODS: In this study, human bronchial epithelial cell (BEAS-2B) and human bronchial smooth muscle cell (HBSMC) were treated with different dose of Ang-(1-7) to observe changes of cell viability. Changes of ATG5 protein expression were measured in 10 ng/mL of interleukin (IL)-13-treated cells. Transfection of ATG5 small interference RNA (siRNA) or ATG5 cDNA in cells was used to analyze the effects of ATG5 on secretion of cytokines in the IL-13-treated cells. The effects of Ang-(1-7) were compared to the effects of ATG5 siRNA transfection or ATG5 cDNA transfection in the IL-13-treated cells. In wild-type (WT) mice and ATG5 knockout (ATG5-/-) mice, ovalbumin (OVA)-induced airway inflammation, fibrosis and autophagy were observed. In the OVA-induced WT mice, Ang-(1-7) treatment was performed to observe its effects on airway inflammation, fibrosis and autophagy. RESULTS: The results showed that ATG5 protein level was decreased with Ang-(1-7) dose administration in the IL-13-treated BEAS-2B and IL13-treated HBSMC. Ang-(1-7) played similar results to ATG5 siRNA that it suppressed the secretion of IL-25 and IL-13 in the IL-13-treated BEAS-2B cells, and inhibited the expression of transforming growth factor (TGF)-ß1 and α-smooth muscle actin (α-SMA) protein in the IL-13-treated HBSMC cells. ATG5 cDNA treatment significantly increased the secretion of IL-25 and IL-13 and expression of TGF-ß1 and α-SMA protein in IL-13-treated cells. Ang-(1-7) treatment suppressed the effects of ATG5 cDNA in the IL-13-treated cells. In OVA-induced WT mice, Ang-(1-7) treatment suppressed airway inflammation, remodeling and autophagy. ATG5 knockout also suppressed the airway inflammation, remodeling and autophagy. CONCLUSIONS: Ang-(1-7) treatment suppressed airway inflammation and remodeling in allergic asthma through inhibiting ATG5, providing an underlying mechanism of Ang-(1-7) for allergic asthma treatment.


Asunto(s)
Asma , Pulmón , Humanos , Animales , Ratones , Pulmón/patología , Ovalbúmina/efectos adversos , Interleucina-13 , Remodelación de las Vías Aéreas (Respiratorias) , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/farmacología , Proteína 5 Relacionada con la Autofagia/uso terapéutico , ADN Complementario/efectos adversos , Asma/genética , Factor de Crecimiento Transformador beta1/metabolismo , Inflamación/tratamiento farmacológico , ARN Interferente Pequeño/efectos adversos , Fibrosis , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
15.
Int J Nanomedicine ; 18: 4987-5009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693885

RESUMEN

Exosomes are small extracellular vesicles, ranging in size from 30-150nm, which can be derived from various types of cells. In recent years, mammalian-derived exosomes have been extensively studied and found to play a crucial role in regulating intercellular communication, thereby influencing the development and progression of numerous diseases. Traditional Chinese medicine has employed plant-based remedies for thousands of years, and an increasing body of evidence suggests that plant-derived exosome-like nanovesicles (PELNs) share similarities with mammalian-derived exosomes in terms of their structure and function. In this review, we provide an overview of recent advances in the study of PELNs and their potential implications for human health. Specifically, we summarize the roles of PELNs in respiratory, digestive, circulatory, and other diseases. Furthermore, we have extensively investigated the potential shortcomings and challenges in current research regarding the mechanism of action, safety, administration routes, isolation and extraction methods, characterization and identification techniques, as well as drug-loading capabilities. Based on these considerations, we propose recommendations for future research directions. Overall, our review highlights the potential of PELNs as a promising area of research, with broad implications for the treatment of human diseases. We anticipate continued interest in this area and hope that our summary of recent findings will stimulate further exploration into the implications of PELNs for human health.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Animales , Comunicación Celular , Medicina Tradicional China , Circulación Pulmonar , Mamíferos
16.
Polymers (Basel) ; 15(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37631440

RESUMEN

Removing sericin from the periphery of silk without damage to silk fibroin (SF) to obtain high-molecular-weight SF is a major challenge in the field of SF-based biomaterials. In this study, four neutral proteases, subtilisin, trypsin, bromelain and papain, were used to degum silk, and the degumming efficiency of the proteases and their influence on the molecular weight (MW) of regenerated silk fibroin were studied. The results indicated that all four neutral proteases could remove sericin from silk almost completely, and they caused less damage to SF fibers than Na2CO3 degumming did. The degumming efficiency of trypsin and papain was strong, but they caused relatively high damage to SF, whereas bromelain caused the least damage. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel permeation chromatography and shear viscosity showed that the MWs of regenerated SF derived from neutral protease degumming were significantly higher than that of SF derived from Na2CO3 degumming. The MW of regenerated SF derived from bromelain degumming was the highest, while the MWs of regenerated SF derived from papain and trypsin degumming were relatively low. This study provides an efficient and environmentally friendly biological degumming method for obtaining high-molecular-weight silk fibroin.

17.
Nat Rev Chem ; 7(7): 462-479, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37414982

RESUMEN

Interest in photovoltaics (PVs) based on Earth-abundant halide perovskites has increased markedly in recent years owing to the remarkable properties of these materials and their suitability for energy-efficient and scalable solution processing. Formamidinium lead triiodide (FAPbI3)-rich perovskite absorbers have emerged as the frontrunners for commercialization, but commercial success is reliant on the stability meeting the highest industrial standards and the photoactive FAPbI3 phase suffers from instabilities that lead to degradation - an effect that is accelerated under working conditions. Here, we critically assess the current understanding of these phase instabilities and summarize the approaches for stabilizing the desired phases, covering aspects from fundamental research to device engineering. We subsequently analyse the remaining challenges for state-of-the-art perovskite PVs and demonstrate the opportunities to enhance phase stability with ongoing materials discovery and in operando analysis. Finally, we propose future directions towards upscaling perovskite modules, multijunction PVs and other potential applications.


Asunto(s)
Compuestos de Calcio , Planeta Tierra , Ingeniería , Industrias
18.
J Ethnopharmacol ; 314: 116608, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37150421

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zigui-Yichong-Fang (ZGYCF) is a traditional Chinese medicine prescription for the treatment of infertility and premature ovarian insufficiency (POI). It is clinically used to regulate hormone levels, improve ovarian reserve and increase pregnancy rate. However, the exact mechanism of action is not yet clear. AIMS OF THE STUDY: This study aimed to explore the potential impact and mechanism of ZGYCF on POI, and provide a scientific basis for its clinical application. MATERIALS AND METHODS: UHPLC‒MS/MS was used to identify the main compounds of ZGYCF. Female 8-week-old C57BL/6N mice were randomized into four group containing the vehicle control (Veh) group, the cyclophosphamide (CTX) model group, the low-dose ZGYCF (CTX-ZG-L) group and the high-dose ZGYCF (CTX-ZG-H) group. A mouse POI model was induced with a single intraperitoneal injection of CTX, and the therapeutic effects of different doses of ZGYCF on POI were evaluated according to the ovarian weight coefficient, serum AMH, serum E2, ovarian histomorphology and follicle counts. After the dose screening experiment, the CTX-ZG-L group was renamed the CTX-ZG group and subjected to follow-up experiments. RNA-seq was used to explore the mechanism of POI and the therapeutic mechanism of ZGYCF on POI in Veh group, CTX group and CTX-ZG group. The mechanism of action of ZGYCF on POI were determined by measuring serum hormone level, histomorphology, follicle counts, protein expression and acetylation modification in groups of Veh, CTX, CTX-ZG and CTX-ZG-Nam (SIRT1 inhibitor). RESULTS: A total of 37 compounds in ZGYCF were identified. ZGYCF attenuated the morphological changes in ovarian tissue in POI model mice, increased serum AMH and E2 levels, reduced the damage to primordial follicles and other follicles at all stages, and protected ovarian reserve. RNA-seq results suggested that the genes expression of the PI3K signaling and apoptosis signaling pathways was increased in POI mice, while ZGYCF upregulated SIRT1 gene and the expression of estradiol, apoptosis inhibition and other signaling pathway genes. Immunohistochemical staining, TUNEL staining, Western blot analysis and immunoprecipitation results showed that in CTX group, SIRT1 expression and Foxo3a nuclei localization were decreased, while Ac-Foxo3a, p-AKT, p-Foxo3a and apoptotic markers were upregulated. After administration of ZGYCF, these conditions were reversed, however, after treatment with the SIRT1 inhibitor, the results were opposite to those of ZGYCF. CONCLUSIONS: Acetylated Foxo3a plays an important role in the occurrence of POI. ZGYCF improves the ovarian reserve of CTX-induced POI mice by activating SIRT1-mediated deacetylation of Foxo3a, and played a role in the treatment of POI. SIRT1 may be a novel target for ZGYCF to ameliorate POI.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Sirtuina 1/metabolismo , Fosfatidilinositol 3-Quinasas , Espectrometría de Masas en Tándem , Ratones Endogámicos C57BL , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/prevención & control , Ciclofosfamida/toxicidad , Estradiol/uso terapéutico , Modelos Animales de Enfermedad
19.
Biopolymers ; 114(7): e23554, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37232459

RESUMEN

The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2 CO3 -degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.


Asunto(s)
Fibroínas , Sericinas , Humanos , Fibroínas/química , Andamios del Tejido/química , Bromelaínas , Materiales Biocompatibles/química , Sericinas/química , Peso Molecular , Células Endoteliales/metabolismo , Ingeniería de Tejidos/métodos , Seda/química , Proliferación Celular
20.
ACS Nano ; 17(11): 11023-11038, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37257082

RESUMEN

Drug-free macromolecular therapeutics are promising alternatives to traditional drugs. Nanomedicines with multiple organelles targeting can potentially increase the efficacy. Herein, a drug-free macromolecular therapeutic was designed to formulate endoplasmic reticulum (ER) and mitochondria dual-targeting nanoparticles (EMT-NPs), which can synergistically elicit ER stress and mitochondrial dysfunction. In vitro experiments indicated that EMT-NPs could effectively enter ER and mitochondria at an approximate ratio of 2 to 3. Subsequently, EMT-NPs could upregulate ER stress-related protein expression (IRE1α, CHOP), boosting calcium ion (Ca2+) efflux and activating the caspase-12 signaling cascade in cancer cells. In addition, EMT-NPs induced direct oxidative stress in mitochondria; some mitochondrial-related apoptotic events such as decreased mitochondrial membrane potential (MMP), upregulation of Bax, cytochrome c release, and caspase-3 activation were also observed for tumor cells upon incubation with EMT-NPs. Furthermore, the leaked Ca2+ from ER could induce mitochondrial Ca2+ overloading to further augment cancer cell apoptosis. In brief, mitochondrial and ER signaling networks collaborated well to promote cancer cell death. Extended photoacoustic and fluorescence imaging served well for the treatment of in vivo patient-derived xenografts cancer model. This drug-free macromolecular strategy with multiple subcellular targeting provides a potential paradigm for cancer theranostics in precision nanomedicine.


Asunto(s)
Endorribonucleasas , Neoplasias , Humanos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas , Apoptosis , Estrés del Retículo Endoplásmico , Mitocondrias , Línea Celular Tumoral , Potencial de la Membrana Mitocondrial , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA