Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39316508

RESUMEN

Radiotherapy (RT) is one of the major treatments for cancers and a promising initiator of immune response. Gold nanoparticles are a promising radiosensitizer. In this study, we sought to optimize the drug delivery efficiency of gold nanoparticles and explore their function in delivering stimulator of interferon genes (STING) agonists with or without RT. Gold nanoparticles covalent to MSA-2 (MSA-Au) were mixed with cRGD-modified neutrophil membranes to obtain M-Au@RGD-NM. We explored the treatment efficiency of M-Au@RGD-NM combined with RT. Immune cell regulation and STING pathway activation were detected. We successfully prepared M-Au@RGD-NM with significant tumor suppression by induction of ROS and the resulting DNA damage. In vivo dynamic imaging showed that M-Au@RGD-NM was mainly targeted to radiated tumors. Tumor-bearing mice showed significant tumor inhibition following a combination therapy. M-Au@RGD-NM significantly activated the STING pathway and regulated the whole-body immune response. Locally radiated tumors showed dendritic cells mature, CD8+ T cells upregulation, and M1 polarization, with systematic immune response demonstrated by CD8+ T cell infiltration in abscopal tumors. In this study, we synthesized M-Au@RGD-NM loading MSA-2. Following characterization, we found that RT-based M-Au@RGD-NM treatment achieved good antitumor effects, tumor RT enhancement, and induction of an immune response via STING activation.

2.
Magn Reson Imaging ; 114: 110234, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288886

RESUMEN

PURPOSE: This study aimed to assess changes in white matter microstructure among patients undergoing obstructive sleep apnea hypopnea syndrome (OSAHS) complicated by cognitive impairment through neurite orientation dispersion and density imaging (NODDI), and evaluate the relationship to cognitive impairment as well as the diagnostic performance in early intervention. METHODS: Totally 23 OSAHS patients, 43 OSAHS patients complicated by cognitive impairment, and 15 healthy controls were enrolled in OSA, OSACI and HC groups of this work. NODDI toolbox and FMRIB's Software Library (FSL) were used to calculate neurite density index (NDI), Fractional anisotropy (FA), volume fraction of isotropic water molecules (Viso), and orientation dispersion index (ODI). Tract-based spatial statistics (TBSS) were carried out to examine the above metrics with one-way ANOVA. This study explored the correlations of the above metrics with mini-mental state examination (MMSE), and montreal cognitive assessment (MoCA) scores. Furthermore, receiver operating characteristic (ROC) curves were plotted. Meanwhile, area under curve (AUC) values were calculated to evaluate the diagnostic performance of the above metrics. RESULTS: NDI, ODI, Viso, and FA were significantly different among different brain white matter regions, among which, difference in NDI showed the greatest statistical significance. In comparison with HC group, OSA group had reduced NDI and ODI, whereas elevated Viso levels. Conversely, compared to the OSA group, the OSACI group displayed a slight increase in NDI and ODI values, which remained lower than HC group, viso values continued to rise. Post-hoc analysis highlighted significant differences in these metrics, except for FA, which showed no notable changes or correlations with neuropsychological tests. ROC analysis confirmed the diagnostic efficacy of NDI, ODI, and Viso with AUCs of 0.6908, 0.6626, and 0.6363, respectively, whereas FA's AUC of 0.5042, indicating insufficient diagnostic efficacy. CONCLUSIONS: This study confirmed that NODDI effectively reveals microstructural changes in white matter of OSAHS patients with cognitive impairment, providing neuroimaging evidence for early clinical diagnosis and intervention.

3.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39282390

RESUMEN

During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.

4.
JBI Evid Implement ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39149772

RESUMEN

OBJECTIVE: This study provides a comprehensive overview of the knowledge structure and research hotspots regarding barriers and strategies for the implementation of clinical practice guidelines. METHODS: Publications on barriers and strategies for guideline implementation were searched for on Web of Science Core Collection from database inception to October 24, 2022. R package bibliometrix, VOSviewer, and CiteSpace were used to conduct the analysis. RESULTS: The search yielded 21,768 records from 3,975 journals by 99,998 authors from 3,964 institutions in 186 countries between 1983 and 2022. The number of published papers had a roughly increasing trend annually. The United States, the United Kingdom, and Canada contributed the majority of records. The University of Toronto, the University of Washington, and the University of Sydney were the biggest node in their cluster on the collaboration network map. The three journals that published the greatest number of relevant studies were Implementation Science, BMJ Open, and BMC Health Services Research. Grimshaw JM was the author with the most published articles, and was the second most co-cited author. Research hotspots in this field focused on public health and education, evidence-based medicine and quality promotion, diagnosis and treatment, and knowledge translation and barriers. Challenges and barriers, as well as societal impacts and inequalities, are likely to be key directions for future research. CONCLUSIONS: This is the first bibliometric study to comprehensively summarize the research trends of research on barriers and strategies for clinical practice guideline implementation. A better understanding of collaboration patterns and research hotspots may be useful for researchers. SPANISH ABSTRACT: http://links.lww.com/IJEBH/A247.

5.
Adv Healthc Mater ; : e2400466, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091049

RESUMEN

Chemical topology provides a unique dimension for making therapeutic protein bioconjugates with native structure and intact function, yet the effects of topology remain elusive. Herein, the design, synthesis, and characterization of therapeutic protein bioconjugates in three topologies (i.e., tadpole, macrocycle, and figure-of-eight), are reported. The interferon α2b (IFN) and albumin binding domain (ABD) are selected as the model proteins for bioconjugation and proof-of-concept. The biosynthesis of these topological isoforms is accomplished via direct expression in cells using SpyTag-SpyCatcher chemistry and/or split-intein-mediated ligation for topology diversification. The corresponding topologies are proven with combined techniques of LC-MS, SDS-PAGE, and controlled proteolytic digestion. While the properties of these topological isoforms are similar in most cases, the figure-of-eight-shaped bioconjugate, f8-IFN-ABD, exhibits the best thermal stability and anti-aggregation properties along with prolonged half-life and enhanced tumor retention relative to the tadpole-shaped control, tadp-IFN-ABD, and the macrocyclic control, c-IFN-ABD, showcasing considerable topological effects. The work expands the topological diversity of proteins and demonstrates the potential advantages of leveraging chemical topology for functional benefits beyond multi-function integration in protein therapeutics.

6.
Angew Chem Int Ed Engl ; : e202411576, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984566

RESUMEN

Mechanically interlocked molecules, such as rotaxanes, have drawn significant attention within supramolecular chemistry. Although a variety of macrocycles have been thoroughly explored in rotaxane synthesis, metal-organic macrocycles remain relatively under-investigated. Aluminum molecular rings, with their inner cavities and numerous binding sites, present a promising option for constructing rotaxanes. Here, we introduce an innovative "ring-donor···axle-acceptor" motif utilizing Al8 molecular rings, enabling the stepwise assembly of molecules, complexes, and polymers through tailored coordination chemistry. This novel approach can not only be applied to macrocycle-based systems like catenanes but also enhance specific functionalities progressively.

7.
Medicine (Baltimore) ; 103(28): e38845, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996172

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of diseases and stands as the second most prevalent liver disorder in the 21st century. Advanced hepatic fibrosis (AHF) is a crucial indicator of the progression of NAFLD. Selenium (Se) is an indispensable trace element for human physiology; however, excessive intake can lead to poisoning and detrimental effects. Notably, males exhibit significantly higher serum Se levels compared to females. To investigate the correlation between serum Se levels and the prevalence of NAFLD and AHF across different genders. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020, 7271 participants were included. Through descriptive analysis, multivariable logistic regression, subgroup analysis, interaction, and restricted cubic spline regression analysis, the relationship between serum Se levels and the prevalence of NAFLD and AHF was investigated. serum Se levels were significantly higher in both male and female NAFLD groups compared to the non-NAFLD groups (Males: 187.570 vs 183.300, Z = -16.169, P < .001; Females: 184.780 vs 180.130, Z = -4.102, P < .001). After adjusting for confounders, an increase in one quartile of serum Se was associated with a 17.60% increase in NAFLD prevalence in males (OR, 1.176; 95% CI: 1.052-1.315) and a 38.50% decrease in AHF prevalence (OR, 0.615; 95% CI: 0.479-0.789). In females, each quartile increase in serum Se was associated with a 29.10% increase in NAFLD prevalence (OR,1.291;95%CI: 1.155-1.442) and a 51.60% decrease in AHF prevalence (OR, 0.484; 95% CI: 0.344-0.682). serum Se levels are positively correlated with the prevalence of NAFLD and negatively correlated with the prevalence of AHF in both males and females.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Encuestas Nutricionales , Selenio , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/sangre , Masculino , Selenio/sangre , Femenino , Persona de Mediana Edad , Adulto , Prevalencia , Factores Sexuales , Cirrosis Hepática/epidemiología , Cirrosis Hepática/sangre , Estudios Transversales , Anciano
8.
Adv Sci (Weinh) ; 11(29): e2305593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873820

RESUMEN

Centromere protein A (CENP-A), a centromere-specific histone H3 variant, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of ß-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.


Asunto(s)
Proteína A Centromérica , Microtúbulos , Proteolisis , Humanos , Antígenos CD , Cadherinas , Proteínas Cdh1/metabolismo , Proteínas Cdh1/genética , Proteína A Centromérica/metabolismo , Proteína A Centromérica/genética , Cristalografía por Rayos X/métodos , Indoles/metabolismo , Indoles/farmacología , Indoles/química , Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Proteolisis/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/efectos de los fármacos , Relación Estructura-Actividad
9.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838264

RESUMEN

Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu16(C2B10H10S2)8 (denoted as Cu16@CB8, where C2B10H12S2H2 = 9,12-(HS)2-1,2-closo-carborane) cluster by an achiral carboranylthiolate ligand. The chiral R-/S-Cu16@CB8 cluster features chiral cavities reminiscent of cyclodextrins, which are surrounded by carborane clusters, yet they crystallize in a racemate. These cyclodextrin-like cavities demonstrated the specific recognition of amino acids, as indicated by the responsive output of circular dichroism and circularly polarized luminescence signals of Cu16 moieties of the Cu16@CB8 cluster. Notably, a quantitative chiroptical analysis of amino acids in a short time and a concomitant deracemization of Cu16@CB8 were achieved. Density functional tight-binding molecular dynamics simulation and noncovalent interaction analysis further unraveled the great importance of the cavities and binding sites for chiral recognition. Dipeptide, tripeptide, and polypeptide containing the corresponding amino acids (Cys, Arg, or His residues) display the same chiral recognition, showing the generality of this approach. The functional synergy of dual clusters, comprising carborane and metal clusters, is for the first time demonstrated in the Cu16@CB8 cluster, resulting in the valuable quantification of the enantiomeric excess (ee) value of amino acids. This work opens a new avenue for chirality sensors based on chiral metal clusters with unique chiroptical properties and inspires the development of carborane clusters in host-guest chemistry.

10.
MycoKeys ; 105: 267-294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855321

RESUMEN

Panus is a typical wood-rotting fungi, which plays considerable roles in ecosystems and has significant economic value. The genus Panus currently consists of more than 100 species; however, only eight species have been reported from China. This study aims to distinguish and describe two novel species from the Panussimilis complex, namely Panusminisporus and Panusbaishanzuensis, one new record species from Zhejiang Province, Panussimilis and three common species, Panusconchatus, Panusneostrigosus and Panusrudis, based on detailed morphological and phylogenetic studies, relying on Chinese specimens. Panusminisporus is characterised by its reddish-brown pileus, decurrent lamellae with cross-veins, slender stipe, smaller basidiospores, wider generative hyphae and absence of sclerocystidia. Panusbaishanzuensis is featured by its pileus with concentric and darker ring zone, decurrent lamellae with cross-veins, shorter stipe, longer basidiospores, diverse and shorter cheilocystidia and smaller sclerocystidia. Internal transcribed spacer (ITS) regions, large subunit nuclear ribosomal RNA gene (nLSU) and translation elongation factor 1-α gene (tef-1α) were employed to perform a thorough phylogenetic analysis for genus Panus and related genera, using Bayesian Inference and Maximum Likelihood analysis. The results indicate that Panusminisporus and Panusbaishanzuensis form two independent clades within the Panussimilis complex themselves. Detailed descriptions, taxonomic notes, illustrations etc. were provided. In addition, a key to the reported species of Panus from China is also provided.

11.
Biochem Pharmacol ; 224: 116261, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705534

RESUMEN

Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.


Asunto(s)
Angiotensina I , Hipocampo , Ratones Transgénicos , Fragmentos de Péptidos , Receptores Acoplados a Proteínas G , alfa-Sinucleína , Animales , Humanos , Masculino , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Angiotensina I/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Mutación , Fragmentos de Péptidos/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/genética , Complicaciones Posoperatorias/metabolismo , Complicaciones Posoperatorias/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
12.
Antiviral Res ; 227: 105890, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657838

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic bunyavirus with a fatality rate of up to 40%. Currently, there are no licensed antiviral drugs for the treatment of CCHF; thus, the World Health Organization (WHO) listed the disease as a priority. A unique viral transcription initiation mechanism called "cap-snatching" is shared by influenza viruses and bunyaviruses. Thus, we tested whether baloxavir (an FDA-approved anti-influenza drug that targets the "cap-snatching" mechanism) could inhibit CCHFV infection. In cell culture, baloxavir acid effectively inhibited CCHFV infection and targeted CCHFV RNA transcription/replication. However, it has weak oral bioavailability. Baloxavir marboxil (the oral prodrug of baloxavir) failed to protect mice against a lethal dose challenge of CCHFV. To solve this problem, baloxavir sodium was synthesized owing to its enhanced aqueous solubility and pharmacokinetic properties. It consistently and significantly improved survival rates and decreased tissue viral loads. This study identified baloxavir sodium as a novel scaffold structure and mechanism of anti-CCHF compound, providing a promising new strategy for clinical treatment of CCHF after further optimization.


Asunto(s)
Antivirales , Dibenzotiepinas , Morfolinas , Piridinas , Piridonas , Triazinas , Replicación Viral , Animales , Morfolinas/farmacología , Morfolinas/farmacocinética , Morfolinas/química , Antivirales/farmacología , Antivirales/farmacocinética , Antivirales/química , Dibenzotiepinas/farmacología , Dibenzotiepinas/farmacocinética , Ratones , Piridinas/farmacología , Piridinas/farmacocinética , Piridinas/química , Replicación Viral/efectos de los fármacos , Triazinas/farmacología , Triazinas/farmacocinética , Triazinas/química , Triazinas/uso terapéutico , Piridonas/farmacología , Piridonas/farmacocinética , Piridonas/química , Tiepinas/farmacología , Tiepinas/uso terapéutico , Tiepinas/farmacocinética , Tiepinas/química , Carga Viral/efectos de los fármacos , Chlorocebus aethiops , Células Vero , Femenino , Oxazinas/farmacología , Oxazinas/farmacocinética , Oxazinas/uso terapéutico , Ratones Endogámicos BALB C , Humanos , Tiazoles/farmacología , Tiazoles/farmacocinética , Tiazoles/química
13.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559216

RESUMEN

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.

14.
Acc Chem Res ; 57(9): 1458-1466, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38654437

RESUMEN

ConspectusRecent years have witnessed the development of cluster materials as they are atomically precise molecules with uniform size and solution-processability, which are unattainable with traditional nanoparticles or framework materials. The motivation for studying Al(III) chemistry is not only to understand the aggregation process of aluminum in the environment but also to develop novel low-cost materials given its natural abundance. However, the Al-related clusters are underdeveloped compared to the coinage metals, lanthanides, and transition metals. The challenge in isolating crystalline compounds is the lack of an effective method to realize the controllable hydrolysis of Al(III) ions. Compared with the traditional hydrolysis of inorganic Al(III) salts in highly alkaline solutions and hydrolysis of aluminum trialkyl compounds conducted carefully in an inert operating environment, we herein developed an effective way to control the hydrolysis of aluminum isopropanol through an alcoxalation reaction. By solvothermal/low melting point solid melting synthesis and using "ligand aggregation, solvent regulation, and supracluster assembly" strategies, our laboratory has established an organic-inorganic hybrid system of aluminum oxo clusters (AlOCs). The employment of organic ligands promotes the aggregation and slows the hydrolysis of Al(III) ions, which in turn improves the crystallization process. The regulation of the structure types can be achieved through the selection of ligands and the supporting solvents. Compared with the traditional condensed polyoxoaluminates, we successfully isolated a broad range of porous AlOCs, including aluminum molecular rings and Archimedes aluminum oxo cages. By studying ring expansion, structural transformation, and intermolecular supramolecular assembly, we demonstrate unique and unprecedented structural controllability and assembly behavior in cluster science. The advancement of this universal synthetic method is to realize materials customization through modularly oriented supracluster assembly. In this Account, we will provide a clear-cut definition and terminology of "ligand aggregation, solvent regulation, and supracluster assembly". Then we will discuss the discovery in this area by using a strategy, such as aluminum molecular ring, ring size expansion, ring supracluster assembly, etc. Furthermore, given the internal and external pore structures, as well as the solubility and modifiability of the AlOCs, we will demonstrate their potential applications in both the solid and liquid phases, such as iodine capture, the optical limiting responses, and dopant in polymer dielectrics. The strategy herein can be applied to extensive cluster science and promote the research of main group element chemistry. The new synthetic method, fascinating clusters, and unprecedented assembly behaviors we have discovered will advance Al(III) chemistry and will also lay the foundation for functional applications.

15.
mBio ; 15(5): e0075124, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38591890

RESUMEN

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE: This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Fusión Celular , Evasión Inmune , SARS-CoV-2 , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , COVID-19/virología , Humanos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Cricetinae , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la COVID-19/inmunología
16.
J Am Chem Soc ; 146(11): 7524-7532, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451059

RESUMEN

Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.

17.
Viruses ; 16(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400053

RESUMEN

Previous studies reported that the association between statins use and influenza infection was contradictory. A systematic review and meta-analysis of longitudinal studies were performed to determine the association between statins use and influenza susceptibility. The literature search was conducted in PubMed, Embase, and Web of Science, from each database's inception to 21 May 2023. The fixed effect model and random effects model were used for data synthesis. In our study, a total of 1,472,239 statins users and 1,486,881 statins non-users from five articles were included. The pooled risk ratio (RR) of all included participants was 1.05 (95% CI: 1.03-1.07), and there were still significant differences after adjusting for vaccination status. Of note, RR values in statins users were 1.06 (95% CI: 1.03-1.08) in people aged ≥60 years old and 1.05 (95% CI: 1.03-1.07) in participant groups with a higher proportion of females. Administration of statins might be associated with an increased risk of influenza infection, especially among females and elderly people. For those people using statins, we should pay more attention to surveillance of their health conditions and take measures to prevent influenza infection.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Gripe Humana , Humanos , Gripe Humana/prevención & control , Gripe Humana/epidemiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Estudios Longitudinales , Susceptibilidad a Enfermedades , Femenino , Masculino , Persona de Mediana Edad , Anciano , Factores de Riesgo
18.
PLoS Pathog ; 20(2): e1011948, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300972

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Ratones , Humanos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Anticuerpos Monoclonales , Microscopía por Crioelectrón , Anticuerpos Neutralizantes , Epítopos
19.
Sci Rep ; 14(1): 2196, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272958

RESUMEN

The RECO is a novel endovascular treatment (EVT) device that adjusts the distance between two mesh segments to axially hold the thrombus. We organized this postmarket study to assess the safety and performance of RECO in acute ischaemic stroke (AIS) patients with large vessel occlusion (LVO). This was a single-arm prospective multicentre study that enrolled patients as first-line patients treated with RECO at 9 stroke centres. The primary outcome measures included functional independence at 90 days (mRS 0-2), symptomatic intracranial haemorrhage (sICH), time from puncture to recanalization and time from symptom onset to recanalization. The secondary outcome measures were a modified thrombolysis in cerebral infarction (mTICI) score of 2b or 3 after the first attempt and at the end of the procedure and the all-cause mortality rate within 90 days. From May 22, 2020, to July 30, 2022, a total of 268 consecutive patients were enrolled in the registry. The median puncture-to-recanalization time was 64 (IQR, 45-92), and the symptom onset-to-recanalization time was 328 min (IQR, 228-469). RECO achieved successful reperfusion (mTICI 2b-3) after the first pass in 133 of 268 patients (49.6%). At the end of the operation, 96.6% of the patients reached mTICI 2b-3, and 97.4% of the patients ultimately achieved successful reperfusion. Sixteen (7.2%) patients had sICH. A total of 132 (49.3%) patients achieved functional independence at 90 days, and the all-cause mortality rate within 90 days was 17.5%. In this clinical experience, the RECO device achieved a high rate of complete recanalization with a good safety profile and favourable 90-day clinical outcomes.Clinical trial registration: URL: https://www.clinicaltrials.gov/ ; Unique identifier: NCT04840719.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Estudios Prospectivos , Trombectomía/métodos , Resultado del Tratamiento , Infarto Cerebral/etiología , Accidente Cerebrovascular Isquémico/cirugía , Accidente Cerebrovascular Isquémico/etiología , Hemorragias Intracraneales/etiología , Procedimientos Endovasculares/métodos , Sistema de Registros , Estudios Retrospectivos
20.
Neuroradiology ; 66(3): 399-407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183425

RESUMEN

PURPOSE: The optimal primary recanalization strategy for intracranial atherosclerosis-related emergent large vessel occlusion (ICAS-ELVO) remains controversial. We aimed to explore the safety and efficacy of balloon angioplasty as the first-choice recanalization strategy for ICAS-ELVO with small clot burden. METHODS: Consecutive ICAS-ELVO patients presenting with microcatheter "first-pass effect" during endovascular treatment (EVT) were retrospectively analyzed. Patients were divided into preferred balloon angioplasty (PBA) and preferred mechanical thrombectomy (PMT) groups based on the first-choice recanalization strategy. The reperfusion and clinical outcomes between the two groups were compared. RESULTS: Seventy-six patients with ICAS-ELVO involving the microcatheter "first-pass effect" during EVT were enrolled. Compared with patients in the PMT group, those in the PBA group were associated with (i) a higher rate of first-pass recanalization (54.0% vs. 28.9%, p = .010) and complete reperfusion (expanded thrombolysis in cerebral ischemia ≥ 2c; 76.0% vs. 53.8%, p = .049), (ii) shorter puncture-to-recanalization time (49.5 min vs. 89.0 min, p < .001), (iii) lower operation costs (¥48,499.5 vs. ¥ 99,086.0, p < .001), and (iv) better 90-day functional outcomes (modified Rankin scale:0-1; 44.0% vs. 19.2%, p = .032). Logistic regression analysis revealed that balloon angioplasty as the first-choice recanalization strategy was an independent predictor of 90-day excellent functional outcomes for ICAS-ELVO patients with microcatheter "first-pass effect" (adjusted odds ratio = 6.01, 95% confidence interval: 1.15-31.51, p = .034). CONCLUSION: Direct balloon angioplasty potentially improves 90-day functional outcomes for ICAS-ELVO patients with small clot burden, and may be a more appropriate first-choice recanalization strategy than mechanical thrombectomy for these patients.


Asunto(s)
Angioplastia de Balón , Arteriosclerosis Intracraneal , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/cirugía , Estudios Retrospectivos , Trombectomía , Arteriosclerosis Intracraneal/diagnóstico por imagen , Arteriosclerosis Intracraneal/terapia , Arteriosclerosis Intracraneal/complicaciones , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA