Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Colloids Surf B Biointerfaces ; 245: 114289, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366107

RESUMEN

Alkali proteases are crucial in numerous industries, especially in the laundry industry, but their inactivation by surfactants limits their effectiveness. This study employed substrate access tunnel engineering to improve the performance of WT bcPRO in surfactants. By modifying the key residues in the substrate pocket, the best variant N212S showed higher stability and activity in both AES and LAS. Molecular dynamics (MD) simulations provided insights into the enhanced stability and activity. The Asn212Ser mutation weakened the anti-correlation motion, increased the number of hydrogen bonds between amino acid residues, and made the protein structure more compact, contributing to its stability. Additionally, the mutation extended the substrate access tunnel and enabled additional interactions with the substrate, enhancing its catalytic activity in surfactants. This study demonstrates a strategy for reshaping the substrate access tunnel to improve protease stability and activity in surfactant environments, offering a promising protease candidate for the laundry industry.

2.
Sci Adv ; 10(40): eadp8866, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39356763

RESUMEN

Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within internal organs, offering transformative potential in the diagnosis, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive two dimensionally layered material, which we refer to as OBXene), which exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. We report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.


Asunto(s)
Prótesis e Implantes , Animales , Porcinos , Órbita/cirugía , Impedancia Eléctrica , Materiales Biocompatibles/química
3.
BMC Nurs ; 23(1): 617, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227877

RESUMEN

BACKGROUND: "The hidden costs of informal caregiving" is an interdisciplinary concept. While caregivers make a significant contribution to the process of caregiving, they sacrifice their leisure time, and incur risks of dropping out of the job, impaired mental and physical health, and decreased well-being within the context of caregiving. Those invisible sacrifices are often overlooked and described as hidden costs of informal caregiving. However, the conceptualisation of hidden costs of informal caregiving has not yet been clarified and scientifically assessed. The research aimed to clarify the concept of hidden costs of informal caregiving and develop an operational definition. METHODS: Walker and Avant's concept analysis was conducted. Databases of CBM, CNKI, WanFang, VIP, PubMed, Embase, CINAHL, Web of Science, MEDLINE, Cochrane Library, Econlit, CINAHL and ProQuest were searched with the term "hidden costs of informal caregiving". Information about the uses of the concept, defining attributes, model cases, antecedents, consequences and empirical referents of hidden costs of informal caregiving was extracted and synthesized. RESULTS: A total of 25 articles were included. The six defining attributes of hidden costs of informal caregiving were identified as including "undertaken by informal caregivers", "the time costs of caregiving", "costs of career development" "physical well-being costs", "mental well-being costs" and "social relationship costs". Personal characteristics of the caregivers and care recipients, along with caregiving attributes, were among the antecedents. The consequences of hidden costs of informal caregiving resulted in negative influences which included poor quality of life, life-altering decisions, options for the type of care, some degree of economic hardship, decreased compliance with treatment plans and monetary value informal caregivers are willing to pay to be replaced. CONCLUSION: This concept analysis decisively illuminated the hitherto nebulous concept and expanded the contents of hidden costs of informal caregiving, which will foster a deeper appreciation of the invisible cost of caregivers. Moreover, it will provide a reference for the study of the hidden costs of informal caregiving in future, contribute to the development of assessment tools and theoretical models of hidden costs of informal caregiving, and create a basis for designing an evidence-based care program.

4.
PLoS One ; 19(9): e0310017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39264966

RESUMEN

OBJECTIVES: This study aimed to examine the potential correlation between myosteatosis and the prognosis of patients diagnosed with liver cirrhosis by a meta-analysis. METHODS: Cohort studies of relevance were acquired through comprehensive searches of the Medline, Web of Science, and Embase databases. To account for heterogeneity, a random-effects model was employed to combine the findings. RESULTS: The meta-analysis included 10 retrospective and four prospective cohort studies, encompassing a total of 4287 patients diagnosed with cirrhosis. The pooled findings indicated a notable decline in transplant-free survival (TFS) among individuals with liver cirrhosis and myosteatosis compared to those without this condition (risk ratio: 1.94; 95% confidence interval: 1.61 to 2.34, p < 0.001; I2 = 49%). The predefined subgroup analyses demonstrated consistent findings across various categories, including Asian and non-Asian studies, prospective and retrospective cohort studies, patients with cirrhosis overall and those who underwent transjugular intrahepatic portosystemic shunt, studies with different follow-up durations (< or ≥ 24 months), studies employing univariate and multivariate analyses, and studies with and without an adjustment for sarcopenia (p > 0.05 for all subgroup differences). Additionally, Egger's regression test indicated the presence of significant publication bias (p = 0.044). However, trim-and-fill analysis by including three hypothesized studies showed consistent results. CONCLUSIONS: The presence of myosteatosis in individuals diagnosed with liver cirrhosis may potentially be linked to a poor TFS prognosis. Further investigations are required to ascertain whether enhancing myosteatosis could potentially yield a survival advantage for this particular patient population.


Asunto(s)
Cirrosis Hepática , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/mortalidad , Cirrosis Hepática/cirugía , Derivación Portosistémica Intrahepática Transyugular , Pronóstico , Estudios Retrospectivos , Sarcopenia/epidemiología , Sarcopenia/etiología
5.
Nat Genet ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251788

RESUMEN

Androgen receptor (AR) is a ligand-responsive transcription factor that drives terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to activate malignant phenotypes, the molecular mechanisms of which remain unknown. Here, we show that tumor-specific AR enhancers are critically reliant on H3K36 dimethyltransferase activity of NSD2. NSD2 expression is abnormally induced in prostate cancer, where its inactivation impairs AR transactivation potential by disrupting over 65% of its cistrome. NSD2-dependent AR sites distinctively harbor the chimeric FOXA1:AR half-motif, which exclusively comprise tumor-specific AR enhancer circuitries defined from patient specimens. NSD2 inactivation also engenders increased dependency on the NSD1 paralog, and a dual NSD1/2 PROTAC degrader is preferentially cytotoxic in AR-dependent prostate cancer models. Altogether, we characterize NSD2 as an essential AR neo-enhanceosome subunit that enables its oncogenic activity, and position NSD1/2 as viable co-targets in advanced prostate cancer.

6.
Int J Biol Macromol ; 280(Pt 3): 135810, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322137

RESUMEN

rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.

7.
ACS Appl Mater Interfaces ; 16(35): 46538-46547, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39087831

RESUMEN

The development of wearable electronic devices for human health monitoring requires materials with high mechanical performance and sensitivity. In this study, we present a novel transparent tissue-like ionogel-based wearable sensor based on silver nanowire-reinforced ionogel nanocomposites, P(AAm-co-AA) ionogel-Ag NWs composite. The composite exhibits a high stretchability of 605% strain and a moderate fracture stress of about 377 kPa. The sensor also demonstrates a sensitive response to temperature changes and electrostatic adsorption. By encapsulating the nanocomposite in a polyurethane transparent film dressing, we address issues such as skin irritation and enable multidirectional stretching. Measuring resistive changes of the ionogel nanocomposite in response to corresponding strain changes enables its utility as a highly stretchable wearable sensor with excellent performance in sensitivity, stability, and repeatability. The fabricated pressure sensor array exhibits great proficiency in stress distribution, capacitance sensing, and discernment of fluctuations in both external electric fields and stress. Our findings suggest that this material holds promise for applications in wearable and flexible strain sensors, temperature sensors, pressure sensors, and actuators.


Asunto(s)
Nanocompuestos , Nanocables , Plata , Dispositivos Electrónicos Vestibles , Plata/química , Nanocompuestos/química , Nanocables/química , Humanos , Geles/química , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Poliuretanos/química
8.
Biochem Biophys Res Commun ; 733: 150575, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39197199

RESUMEN

Flavin monooxygenases (FMOs) have been widely used in the biosynthesis of natural compounds due to their excellent stereoselectivity, regioselectivity and chemoselectivity. Stenotrophomonas maltophilia flavin monooxygenase (SmFMO) has been reported to catalyze the oxidation of various thiols to corresponding sulfoxides, but its activity is relatively low. Herein, we obtained a mutant SmFMOF52G which showed 4.35-fold increase in kcat/Km (4.96 mM-1s-1) and 6.84-fold increase in enzyme activity (81.76 U/g) compared to the SmFMOWT (1.14 mM-1s-1 and 11.95 U/g) through semi-rational design guided by structural analysis and catalytic mechanism combined with high-throughput screening. By forming hydrogen bond with O4 atom of FAD isoalloxazine ring and reducing steric hindrance, the conformation of FAD isoalloxazine ring in SmFMOF52G is more stable, and NADPH and substrate are closer to FAD isoalloxazine ring, shortening the distances of hydrogen transfer and substrate oxygenation, thereby increasing the rate of reduction and oxidation reactions and enhancing enzyme activity. Additionally, the overall structural stability and substrate binding capacity of the SmFMOF52G have significant improved than that of SmFMOWT. The strategy used in this study to improve the enzyme activity of FMOs may have generality, providing important references for the rational and semi-rational engineering of FMOs.


Asunto(s)
Flavina-Adenina Dinucleótido , Flavinas , Oxigenasas , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Flavinas/metabolismo , Flavinas/química , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Stenotrophomonas maltophilia/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Oxidación-Reducción , Especificidad por Sustrato , Cinética
9.
Int J Biol Macromol ; 279(Pt 2): 135139, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39208907

RESUMEN

2-O-(α-d-glucopyranosyl)-sn-glycerol (2-αGG) has been applied in the food industry due to its numerous physiological benefits. The synthesis of 2-αGG can be achieved through a cascade catalytic reaction involving sucrose phosphorylase (SP) and 2-O-α-glucosylglycerol phosphorylase (GGP). However, the low substrate transfer rates between free enzymes have hindered the efficiency of 2-αGG synthesis. To address this issue, a novel technology was developed to prepare sequential multi-enzyme nanoflowers via chemical crosslinking and protein assembly, thus overcoming diffusion limitations. Specifically, spatially sequential co-immobilized enzymes, referred to as SP-GGP@Cap, were created through the targeted assembly of Bifidobacterium adolescentis SP and Marinobacter adhaerens GGP on Ca2+. This assembly was facilitated by the spontaneous protein reaction between SpyTag and SpyCatcher. Compared to free SP-GGP, SP-GGP@Cap demonstrated improved thermal and pH stability. Moreover, SP-GGP@Cap enhanced the biosynthesis of 2-αGG, achieving a relative concentration of 98 %. Additionally, it retained the ability to catalyze the substrate to yield 61 % relative concentration of 2-αGG even after ten cycles of recycling. This study presents a strategy for the spatially sequential co-immobilization of multiple enzymes in a confined environment and provides an exceptional biocatalyst for the potential industrial production of 2-αGG.


Asunto(s)
Enzimas Inmovilizadas , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Glucósidos/química , Glucósidos/biosíntesis , Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Bifidobacterium adolescentis/enzimología , Concentración de Iones de Hidrógeno , Fosforilasas/metabolismo , Fosforilasas/química , Estabilidad de Enzimas , Temperatura
10.
Int J Genomics ; 2024: 4501154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165489

RESUMEN

Calcium channel blockers are emerging as a new generation of attractive anticancer drugs. SKF96365, originally thought to be a store-operated calcium entry (SOCE) inhibitor, is now often used as a TRPC channel blocker and is widely used in medical diagnostics. SKF96365 has shown antitumor effects on a variety of cancer cell lines. The objective of this study was to investigate the anticancer effect of SKF96365 on esophageal cancer in vivo and in vitro. Cell Counting Kit-8 (CCK-8) and colony formation were used to test the proliferation inhibition of SKF96365 on cell lines. Western blot and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect cell apoptosis rates. In addition, we demonstrated the antitumor effect of SKF96365 in vivo in xenografted mice. As a result, SKF96365 significantly inhibited the proliferation of K510, K30, and EC9706 in vitro. SKF96365 induces apoptosis in three cell lines through the poly(adenosine diphosphate-ribose) polymerase (PARP), caspase-9, and BCL-2 pathways in a dose-dependent and time-dependent manner. Moreover, SKF96365 treatment also induced apoptosis and inhibited tumor growth in nude mice. The calcium channel TRPC1 was significantly downregulated by SKF96365. Autophagy was also induced during the treatment of SKF96365. In summary, SKF96365 induces apoptosis (PARP, caspase-9, and BCL-2) and autophagy (LC3-A/B) by inhibiting TRPC1 in esophageal cancer cells, thereby inhibiting tumor growth.

11.
Int Dent J ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39138099

RESUMEN

INTRODUCTION AND AIMS: Evidence suggests an association between periodontitis and neurodegenerative diseases, but a comprehensive analysis of research trends remains absent. Therefore, we aim to identify research trends and hotspots on the comorbidity between periodontitis and neurodegenerative diseases, understand mechanisms, provide guidance for subsequent studies and show its clinical translational possibility. METHODS: A bibliometric analysis covering 1982 to 2023 was conducted using the Web of Science Core Collection. English-language articles range from January 1, 1982 to November 30, 2023 were analyzed. Data were downloaded on November 30, 2023 and analyzed on December, 2023. Data visualization and statistical analysis were performed to identify trends of annual publications, countries, sources, institutions, authors, most cited articles, and keywords by using Microsoft Excel, VOSviewer, Citespace, R-bibliometrix and Origin Pro. RESULTS: A total of 1,238 articles from 1982 to 2023 on the comorbidity between periodontitis and neurodegenerative diseases were identified. Annual publications showed an upward trend. The United States, University College of London, BRAIN and Shy, Michael E. were the leading nation, affiliation, source and author, respectively. The United States, NEUROLOGY, and Curtis Maurice A. were the most cited nation, source, and author. Keywords network analysis highlighted 'Charcot-Marie-Tooth Disease', 'Alzheimer's Disease' and 'Periodontitis' as focal points. Detection of keywords citation bursts demonstrated 'Porphyromonas gingivalis' and 'Cognitive Dysfunction' as hot topics in recent research. CONCLUSIONS: In recent years, emerging interests of the comorbidity between periodontitis and neurodegenerative diseases (NDs) are growing. Our study enhances the understanding of recent research trends of periodontitis and NDs and provides valuable perspectives within this expanding field, offering new insights into research trends regarding the interplay between 'Porphyromonas gingivalis' and 'Cognitive Dysfunction'. Further research of the molecular mechanisms between P. gingivalis-induced periodontitis, neuroinflammation, that leads neurodegeneration are clearly warranted.

12.
J Cancer ; 15(14): 4686-4699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006068

RESUMEN

Background: SLC30A5, a member of the solute transporter protein family, is implicated in tumorigenesis and cancer progression. This study aimed to explore the expression and prognostic significance of SLC30A family genes in pan-cancer, with a specific emphasis on SLC30A5 in hepatocellular carcinoma (HCC). Methods: Expression patterns and prognostic implications of SLC30A family genes were assessed across 33 cancer types, especially HCC. Co-expression analysis explored the relationship between SLC30A5 and immune cell infiltration, immune checkpoints, pathway molecules related to tumor angiogenesis and epithelial-mesenchymal transition (EMT). The role of SLC30A5 in HCC was evaluated through in vitro and in vivo assays, including CCK8 viability assay, EdU cell proliferation assay, colony formation assay, apoptosis assay, wound healing assay, transwell migration assay, and xenograft mouse model assay using Huh7 cells with targeted knockdown of SLC30A5. Results: SLC30A family genes exhibited overexpression in various tumors. In HCC, upregulation of SLC30A5 expression correlated with adverse prognosis. Significant associations were observed between SLC30A5 expression and immune cell infiltration, immune checkpoints, molecules involved in angiogenesis, and EMT. SLC30A5 overexpression was associated with advanced disease stages, higher histological grades, and vascular invasion. Single-cell RNA sequencing data (GSE112271) revealed notable SLC30A5 expression in malignant cells. In vitro and in vivo assays demonstrated that SLC30A5 knockdown in Huh7 cells reduced proliferation, migration, and invasion while promoting apoptosis. Conclusions: This study highlights the clinical relevance of SLC30A5 in HCC, emphasizing its role in cell proliferation and migration. SLC30A5 emerges as a promising candidate for a prognostic marker and a potential target in HCC.

13.
J Nanobiotechnology ; 22(1): 437, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061092

RESUMEN

BACKGROUND: The oral administration of drugs for treating ulcerative colitis (UC) is hindered by several factors, including inadequate gastrointestinal stability, insufficient accumulation in colonic lesions, and uncontrolled drug release. METHODS: A multiple sensitive nano-delivery system comprising ß-cyclodextrin (CD) and 4-(hydroxymethyl)phenylboronic acid (PAPE) with enzyme/reactive oxygen species (ROS) sensitivity was developed to load celastrol (Cel) as a comprehensive treatment for UC. RESULTS: Owing to the positive charge in the site of inflamed colonic mucosa, the negatively charged nanomedicine (Cel/NPs) could efficiently accumulate. Expectedly, Cel/NPs showed excellent localization ability to colon in vitro and in vivo tests. The elevated concentration of ROS and intestinal enzymes in the colon microenvironment quickly break the CD, resulting in Cel release partially to rebalance microbiota and recover the intestinal barrier. The accompanying cellular internalization of residual Cel/NPs, along with the high concentration of cellular ROS to trigger Cel burst release, could decrease the expression of inflammatory cytokines, inhibit colonic cell apoptosis, promote the macrophage polarization, scavenge ROS, and regulate the TLR4/NF-κB signaling pathway, which certified that Cel/NPs possessed a notably anti-UC therapy outcome. CONCLUSIONS: We provide a promising strategy for addressing UC symptoms via an enzyme/ROS-sensitive oral platform capable of releasing drugs on demand.


Asunto(s)
Colitis Ulcerosa , Triterpenos Pentacíclicos , Especies Reactivas de Oxígeno , Colitis Ulcerosa/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Humanos , Nanopartículas/química , beta-Ciclodextrinas/química , Masculino , Células RAW 264.7 , Inflamación/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Colon/metabolismo , Colon/efectos de los fármacos , Liberación de Fármacos , Ratones Endogámicos C57BL , Triterpenos/farmacología , Triterpenos/química , Sistema de Administración de Fármacos con Nanopartículas/química , Mucosa Intestinal/metabolismo
14.
Bioengineering (Basel) ; 11(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39061743

RESUMEN

Neutral pullulanases, having a good application prospect in trehalose production, showed a limited expression level. In order to address this issue, two approaches were utilized to enhance the yield of a new neutral pullulanase variant (PulA3E) in B. subtilis. One involved using multiple copies of genome integration to increase its expression level and fermentation stability. The other focused on enhancing the PulA-type atypical secretion pathway to further improve the secretory expression of PulA3E. Several strains with different numbers of genome integrations, ranging from one to four copies, were constructed. The four-copy genome integration strain PD showed the highest extracellular pullulanase activity. Additionally, the integration sites ytxE, ytrF, and trpP were selected based on their ability to enhance the PulA-type atypical secretion pathway. Furthermore, overexpressing the predicated regulatory genes comEA and yvbW of the PulA-type atypical secretion pathway in PD further improved its extracellular expression. Three-liter fermenter scale-up production of PD and PD-ARY yielded extracellular pullulanase activity of 1767.1 U/mL at 54 h and 2465.1 U/mL at 78 h, respectively. Finally, supplementing PulA3E with 40 U/g maltodextrin in the multi-enzyme catalyzed system resulted in the highest trehalose production of 166 g/L and the substrate conversion rate of 83%, indicating its potential for industrial application.

15.
Front Plant Sci ; 15: 1336580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974984

RESUMEN

Plant protection unmanned aerial vehicles (UAVs) have become popular in mountain orchards, but due to the differences in planting structures, the chances of heavy spraying, missed spraying and pesticide drift are increasing. To mitigate the adverse effects of these phenomena, it is necessary to clarify the effective deposition range of aerial spray droplets. This study proposed an effective spray swath determination method for the effective spraying range of mountainous orchards with UAVs equipped with a mist nozzle (bilateral 1% coverage). This approach focused on exploring the effects of flight height (unidirectional flight modes of 2, 3 and 4 m), spray nozzle atomization performance (reciprocating flight modes of 20, 30 and 40 µm) and flight route (treetop flying and inter-row flying) on the spraying range in a mountain setting. In addition, the study analysed the relationship between the droplet-size spectrum and the effective swath position. The results showed that it is feasible to use the bilateral 1% coverage evaluation method to determine the effective spray swath of a UAV adapted with a mist nozzle for aerial operation in a mountainous Nangguo Pear orchard. With the increase in UAV flight height (2-4 m), the effective unidirectional spray swath also increased, and with the increase in atomization level (20-40 µm), the effective reciprocating spray swath showed a decreasing trend. Moreover, the average effective swath width measured by the UAV for treetop flight was greater than that measured for inter-row flight. The study also found that the proportion of small droplets (droplet size less than 100 µm) below the UAV route was lower (approximately 50%) than along the sides of the route (approximately 80%), and the spray swath was not symmetrically distributed along the flight route but shifted laterally by approximately 3 to 4 m in the downhill direction.

16.
J Hazard Mater ; 474: 134779, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850935

RESUMEN

Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.


Asunto(s)
Bacillus pumilus , Compuestos de Bencidrilo , Biodegradación Ambiental , Disruptores Endocrinos , Lacasa , Fenoles , Compuestos de Bencidrilo/metabolismo , Lacasa/metabolismo , Lacasa/genética , Fenoles/metabolismo , Bacillus pumilus/enzimología , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Disruptores Endocrinos/metabolismo , Concentración de Iones de Hidrógeno , Saccharomycetales/metabolismo , Saccharomycetales/genética
17.
Int J Biol Macromol ; 273(Pt 2): 133057, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866295

RESUMEN

Poly (butylene adipate-co-terephthalate)/poly (L-lactic acid) (PBAT/PLLA) is one of the most important biodegradable polymer combinations; however, they are flammable with heavy melt dripping and incompatible. To achieve the objective of flame retardation and compatibility, a hybrid polyurethane (PU) with multiple flame retardation elements is synthesized via a new ring-opening polymerization (ROP) method and integrated into PBAT/PLLA film. The PU not only dissolves in different organic solvents at mild temperature but also improves the compatibility of PBAT/PLLA. As PU with respect to PBAT/PLLA is 20 wt%, the limiting oxygen index (LOI) and UL-94 reach 25.5 % and V-0 rating, respectively. In cone calorimeter test, the peak heat release rate (pHRR) of PU/PBAT/PLLA is ahead of PBAT/PLLA, and the total heat release (THR) decreases to 25.85 MJ/m2. The fire safety is achieved successfully. The initial pyrolysis of PU promotes the formation of a seed carbon layer; it continuously breaks down into a series of phosphorus­oxygen radicals and generates different inert gases, while the pyrolytic solid products accelerate the carbonization to form the carbon/silicon composite layer. Then the polymeric combustion is braked completely. Besides, the PU can also tune the mechanical properties of PBAT/PLLA film and enhance its hydrophobicity. This work opens a new window for developing multifunctional flame retardant and paves the way for the richening engineering application of PBAT/PLLA.


Asunto(s)
Retardadores de Llama , Poliésteres , Poliuretanos , Poliuretanos/química , Poliésteres/química , Ácidos Ftálicos/química , Polimerizacion
18.
NPJ Sci Food ; 8(1): 33, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890318

RESUMEN

Fermenting Chinese medicinal herbs could enhance their bioactivities. We hypothesized probiotic-fermented gastrodia elata Blume (GE) with better potential to alleviate insomnia than that of unfermented, thus the changes in chemical composition and the insomnia-alleviating effects and mechanisms of fermented GE on pentylenetetrazole (PTZ)-induced insomnia zebrafish were explored via high-performance liquid chromatography (HPLC) and mass spectroscopy-coupled HPLC (HPLC-MS), phenotypic, transcriptomic, and metabolomics analysis. The results demonstrated that probiotic fermented GE performed better than unfermented GE in increasing the content of chemical composition, reducing the displacement, average speed, and number of apoptotic cells in zebrafish with insomnia. Metabolomic investigation showed that the anti-insomnia effect was related to regulating the pathways of actin cytoskeleton and neuroactive ligand-receptor interactions. Transcriptomic and reverse transcription qPCR (RT-qPCR) analysis revealed that secondary fermentation liquid (SFL) significantly modulated the expression levels of neurod1, msh2, msh3, recql4, ercc5, rad5lc, and rev3l, which are mainly involved in neuron differentiation and DNA repair. Collectively, as a functional food, fermented GE possessed potential for insomnia alleviation.

19.
Front Nutr ; 11: 1404138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860159

RESUMEN

Edible fungi has certain photo-sensitivity during the mushroom emergence stage, but there has been few relevant studies on the responses of Lyophyllum decastes to different light quality. L. decastes were planted in growth chambers with different light qualities that were, respectively, white light (CK), monochromatic red light (R), monochromatic blue light (B), mixed red and blue light (RB), and the mixture of far-red and blue light (FrB). The photo-sensitivity of L. decastes was investigated by analyzing the growth characteristics, nutritional quality, extracellular enzymes as well as the light photoreceptor genes in mushroom exposed to different light treatments. The results showed that R led to mycelium degeneration, fungal skin inactivation and failure of primordial formation in L. decastes. The stipe length, stipe diameter, pileus diameter and the weight of fruiting bodies exposed to RB significantly increased by 8.0, 28.7, 18.3, and 58.2% respectively, compared to the control (p < 0.05). B significantly decreased the stipe length and the weight of fruiting body, with a decrease of 8.5 and 20.2% respectively, compared to the control (p < 0.05). Increased color indicators and deepened simulated color were detected in L. decastes pileus treated with B and FrB in relative to the control. Meanwhile, the expression levels of blue photoreceptor genes such as WC-1, WC-2 and Cry-DASH were significantly up-regulated in mushroom exposed to B and FrB (p < 0.05). Additionally, the contents of crude protein and crude polysaccharide in pileus treated with RB were, respectively, increased by 26.5 and 9.4% compared to the control, while those in stipes increased by 5.3 and 58.8%, respectively. Meanwhile, the activities of extracellular enzyme such as cellulase, hemicellulase, laccase, manganese peroxidase, lignin peroxidase and amylase were significant up-regulated in mushroom subjected to RB (p < 0.05), which may promote the degradation of the culture materials. On the whole, the largest volume and weight as well as the highest contents of nutrients were all detected in L. decastes treated with RB. The study provided a theoretical basis for the regulation of light environment in the industrial production of high quality L. decastes.

20.
mLife ; 3(1): 57-73, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827513

RESUMEN

O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked ß-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA