Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Int Orthop ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287668

RESUMEN

PURPOSE: The focus of this study was to comprehensively assess the clinical outcomes of lumbar fusion utilizing autogenous bone grafting and platelet-rich plasma (PRP) for the management of degenerative lumbar spinal stenosis (DLSS) in elderly individuals. METHOD: A cohort of 40 senior individuals diagnosed with DLSS, who underwent treatment at our hospital between January 2020 and March 2022. The control group consisted of 20 participants who underwent local bone grafting for intervertebral fusion, while the observation group comprised 20 individuals who received a combination of local bone grafting and PRP for lumbar fusion. MRI imaging was employed for a comprehensive assessment of spinal structure. The efficacy of spinal fusion was evaluated through MRI imaging. Clinical treatment outcomes were assessed using the Japanese Orthopaedic Association (JOA) and Oswestry Disability Index (ODI) scoring systems. Postoperative low back pain was quantified using a Visual Analog Scale (VAS). RESULT: During the final follow-up, the observation group demonstrated a significant increase in the inner diameter of the spinal canal and the height of the disc space compared to the control group (P < 0.05).Moreover, the observation group displayed a larger spinal canal than the control group (P < 0.05).A reduced lesion score in the bone grafting region was observed in the observation group compared to the control group during the final follow-up (P < 0.05). Furthermore, the observation group displayed a higher intervertebral fusion continuity score than the control group (P < 0.05).The JOA score in the observation group was significantly higher than in the control group (P < 0.05), while the ODI score was significantly lower (P < 0.05). Of note, the back pain VAS score in the observation group was lower than in the control group at both the three months post-surgery mark and the final follow-up (P < 0.05).The satisfaction rate and overall satisfaction rate in the observation group were significantly higher than those in the control group (P < 0.05), while the dissatisfaction rate in the observation group was evidently lower than in the control group (P < 0.05). CONCLUSION: In the management of DLSS in elderly individuals, the utilization of local bone grafting and PRP in lumbar spinal fusion yields notable outcomes.

2.
Front Pharmacol ; 15: 1411642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139632

RESUMEN

Background: Chronic intestinal pseudo-obstruction (CIPO) is a type of intestinal dysfunction with symptoms of intestinal blockage but without the actual mechanical obstruction. Currently, there are no drugs available to treat this disease. Herein, we report the characterization of the PrP-SCA7-92Q transgenic (Tg) line as a valuable CIPO mouse model and investigated the tolerability and efficacy of the 5-hydroxytryptamine type-4 receptor (5HT4R) agonist velusetrag as a promising pharmacological treatment for CIPO. Methods: To test the pharmacodynamics of velusetrag, 8-week-old SCA7 Tg mice, which express human mutated Ataxin-7 gene containing 92 CAG repeats under the mouse prion protein promoter, were treated for 5 weeks by oral route with velusetrag at 1 and 3 mg/kg doses or vehicle. Body weight was monitored throughout the treatment. After sacrifice, the small intestine and proximal colon were collected for whole-mount immunostaining. Untreated, age-matched, C57BL/6J mice were also used as controls in comparison with the other experimental groups. Results: Analysis of SCA7 Tg mice showed tissue damage and alterations, mucosal abnormalities, and ulcers in the distal small intestine and proximal colon. Morphological changes were associated with significant neuronal loss, as shown by decreased staining of pan-neuronal markers, and with accumulation of ataxin-7-positive inclusions in cholinergic neurons. Administration of velusetrag reversed intestinal abnormalities, by normalizing tissue damage and re-establishing the normal level of glia/neuron's count in both the small and large intestines. Conclusion: We demonstrated that the PrP-SCA7-92Q Tg line, a model originally developed to mimic spinocerebellar ataxia, is suitable to study CIPO pathology and can be useful in establishing new therapeutic strategies, such as in the case of velusetrag. Our results suggest that velusetrag is a promising compound to treat patients affected by CIPO or intestinal dysmotility disease.

3.
Animals (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39123784

RESUMEN

The objective of this study was to examine the effects of varying levels of dietary chitosan supplementation on mitigating cadmium stress and its influence on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and the expression of related genes in juvenile Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Five groups of juvenile tilapias (initial body weight 21.21 ± 0.24 g) were fed five diets with different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan supplementation for 60 days under cadmium stress (0.2 mg/L Cd2+). The findings indicated that, compared with the 0% chitosan group, dietary chitosan could significantly increase (p < 0.05) the final weight (Wf), weight gain rate (WGR), specific growth rate (SGR), daily growth index (DGI), and condition factor (CF), while the feed conversion ratio (FCR) expressed the opposite trend in juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of cholinesterase (CHE), albumin (ALB), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), acid phosphatase (ACP), and lysozyme (LZM), while glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), and complement 3 (C3) in the serum of juvenile GIFT expressed the opposite trend. Dietary chitosan could significantly increase (p < 0.05) the activities of superoxide dismutase (SOD) and catalase (CAT) and significantly decrease (p < 0.05) the activities (contents) of glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in the serum of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of CAT, GST, GSH-Px, and total antioxidant capacity (T-AOC) and significantly decrease (p < 0.05) the contents of MDA in the liver of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of SOD, GSH-Px, T-AOC, Na+-K+-ATPase, and Ca2+-ATPase and significantly decrease (p < 0.05) the activities (contents) of CAT, GST, and MDA in the gills of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of cat, sod, gst, and gsh-px in the liver of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of interferon-γ (inf-γ) in the gills and spleen and significantly down-regulate (p < 0.05) the gene expression of inf-γ in the liver and head kidney of juvenile GIFT. Dietary chitosan could significantly down-regulate (p < 0.05) the gene expression of interleukin-6 (il-6), il-8, and tumor necrosis factor-α (tnf-α) in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of il-10 in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of transforming growth factor-ß (tgf-ß) in the liver and significantly down-regulate (p < 0.05) the gene expression of tgf-ß in the head kidney and spleen of juvenile GIFT. In conclusion, dietary chitosan could mitigate the impact of cadmium stress on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and related gene expression in juvenile GIFT. According to the analysis of second-order polynomial regression, it was found that the optimal dietary chitosan levels in juvenile GIFT was approximately 1.42% to 1.45%, based on its impact on Wf, WGR, SGR, and DGI.

4.
Sci Total Environ ; 950: 175334, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117232

RESUMEN

Phyllosphere microbes play a crucial role in plant health and productivity. However, the influence of abiotic and biotic factors on these communities is poorly understood. Here, we used amplicon sequencing to investigate the microbiome variations across eight grape cultivars and three distinct leaf ages. The diversity and richness of phyllosphere microbiomes were significantly affected by cultivars and leaf age. Young leaves of most grape cultivars had a higher diversity. Beta-diversity analyses revealed notable differences in microbial communities across leaf ages, with bacterial communities varying substantially between cultivars. The main bacterial genera included Staphylococcus, Exiguobacterium, Acinetobacter, Enterococcus, and Erwinia; the principal fungal genera were Cladosporium, Moesziomyces, Alternaria, Didymella, and Coprinellus across all samples. LEfSe analysis revealed significant differences in bacterial and fungal biomarkers at different leaf ages, with no biomarkers identified among different cultivars. Fungal biomarkers were more abundant than bacterial at three leaf ages, and older leaves had more fungal biomarkers. Notably, beneficial microbial taxa with biocontrol potential were present on the phyllosphere at 45 d, whereas certain fungal groups associated with increased disease risk were first detected at 100 d. The bacterial network was more complex than the fungal network, and young leaves had a more complex network in most cultivars. Our study elucidated the dynamics of early grape phyllosphere microbes, providing valuable insights for early detection and prediction of grape diseases and a foundation for leveraging the grape leaf microbiome for agricultural purposes.


Asunto(s)
Microbiota , Hojas de la Planta , Vitis , Vitis/microbiología , Hojas de la Planta/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/genética
5.
Phytomedicine ; 132: 155825, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968790

RESUMEN

BACKGROUND: Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients. METHODS: We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms. RESULTS: We found that the aqueous extracts of Centipeda minima (CM) significantly enhanced the cancer cell-killing activity and granzyme B expression level of CD8+ T cells, in the presence of anti-PD-L1 antibody. Both CM and its active component 6-O-angeloylplenolin (6-OAP) upregulated PD-L1 expression by suppressing GSK-3ß-ß-TRCP-mediated ubiquitination and degradation. CM and 6-OAP significantly enhanced ICI-induced reduction of tumor burden and prolongation of overall survival of mice bearing NSCLC cells, accompanied by upregulation of PD-L1 and increase of CD8+ T cell infiltration. CM also exhibited anti-NSCLC activity in cells and in a patient-derived xenograft mouse model. CONCLUSIONS: These data demonstrated that the induced expression of PD-L1 and enhancement of CD8+ T cell cytotoxicity underlay the beneficial effects of 6-OAP-rich CM in NSCLCs, providing a clinically available and safe medicinal herb for combined use with ICIs to treat this deadly disease.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Animales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/farmacología , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
6.
Drug Metab Dispos ; 52(9): 988-996, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38997155

RESUMEN

P2Y12 receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y12 receptor inhibitor, has submitted a new drug marketing application to the United States Food and Drug Administration. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel. The aim of this study was to investigate the effects of the thiol methyltransferase inhibitor (±)-2,3-dichloro-α-methylbenzylamine (DCMB) on the metabolism and pharmacokinetics of vicagrel. In vitro incubation with human and rat liver microsomes revealed that DCMB significantly inhibited the methylation of vicagrel's thiol metabolite M15-1. Rats were orally administered 6 mg/kg [14C]vicagrel (100 µCi/kg) 1 hour after peritoneal injection with or without DCMB (80 mg/kg). Compared with the control group, the plasma of DCMB-pretreated rats exhibited maximum plasma concentration (C max) decrease and time to reach C max (T max) delay for all vicagrel-related substances, the methylation product of the thiol metabolite (M9-2), and the derivatization product of the active thiol metabolite (MP-M15-2). However, no significant changes in area under the curve (AUC) or half-life (t 1/2) were observed. DCMB had negligible effect on the total radiological recovery of vicagrel within 72 hours, although the rate of vicagrel excretion slowed down within 48 hours. DCMB had a negligible impact on the metabolic pathway of vicagrel. Overall, the present study found that DCMB did not significantly affect the total exposure, metabolic pathways, metabolite profiles, or total excretion rates of vicagrel-related metabolites in rats, but led to C max decrease, T max delay, and slower excretion rate within 48 hours. SIGNIFICANCE STATEMENT: This study used liquid chromatography-tandem mass spectrometry combined with radiolabeling technology to investigate the effects of the thiol methyltransferase inhibitor (±)-2,3-dichloro-α-methylbenzylamine on the absorption, metabolism, and excretion of vicagrel in rats. This work helps to better understand the in vivo metabolism of active thiol metabolites of P2Y12 inhibitors such as clopidogrel, vicagrel, etc.


Asunto(s)
Metiltransferasas , Microsomas Hepáticos , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Bencilaminas/farmacocinética , Bencilaminas/farmacología , Metilación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/farmacocinética , Tiofenos/farmacocinética , Tiofenos/farmacología , Interacciones Farmacológicas , Fenilacetatos
7.
Int Immunopharmacol ; 138: 112463, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971110

RESUMEN

Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.


Asunto(s)
Intestinos , Necroptosis , Daño por Reperfusión , Factor de Transcripción STAT3 , Transducción de Señal , Ácido Ursólico , Animales , Masculino , Ratones , Ratas , Línea Celular , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Ácido Ursólico/farmacología
8.
Chemosphere ; 362: 142644, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901698

RESUMEN

Understanding the microbial community structure of sludge is crucial for improving the design, operation and optimisation of full-scale wastewater treatment plants (WWTPs). This study aimed to have a comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge from two full-scale sequential batch reactors-based WWTPs with nutrient removal for the first time. To better understand key functional bacteria such as polyphosphate accumulating bacteria (PAOs), competitive bacteria such as glycogen accumulating bacteria (GAOs) and nitrifying bacteria for both nitrogen and phosphorus removal, another two full-scale WWTPs with only carbon (C) removal and C and nitrogen (N) removal were compared too. It was found that the richness and diversity of the microbial population in sludge increased with pollutant removal from only C, C and N, to C,N, P removal. For C, N P removal, granule structure led to a more diverse and rich microbial community structure than flocculent structure. Although more abundant nitrifying bacteria were enriched in granular sludge than flocculent sludge, the abundance of total putative PAOs was equivalent. However, the most typical putative PAOs such as Tetrasphaera and Candidatus Accumulibacter seemed to be more correlated with biological phosphorus removal performance, which might be more proper to be used as an indication for P removal potential. The higher abundance of GAOs in flocculent sludge with better phosphorus removal performance might suggest that further investigation is needed to understand the functions of GAOs. In addition, the equivalent abundances of PAOs in the WWTPs with only C removal and with C, N, and P removal, respectively, indicate that many newly reported putative PAOs might not contribute to P removal. This study provides insight into the microbial communities and functional bacteria in aerobic granular sludge and flocculent sludge in full-scale SBRs, which can provide microbes-informed optimisation of reactor operation for better nutrient removal.


Asunto(s)
Bacterias , Reactores Biológicos , Nitrógeno , Fósforo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Aguas Residuales/microbiología , Aguas Residuales/química , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Carbono/metabolismo , Microbiota , Nitrificación , Polifosfatos/metabolismo , Aerobiosis , Floculación
10.
Genome Res ; 34(5): 740-756, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38744529

RESUMEN

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Asunto(s)
Adenina , Metilación de ADN , Tetrahymena thermophila , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenina/metabolismo , Adenina/análogos & derivados , Replicación del ADN , ADN Protozoario/genética , ADN Protozoario/metabolismo
11.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817335

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

12.
World J Clin Cases ; 12(11): 1980-1989, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38660556

RESUMEN

BACKGROUND: This case report presents the rare occurrence of hematochezia due to an internal iliac artery aneurysm leading to an arterioenteric fistula, expanding the differential diagnosis for gastrointestinal bleeding. It emphasizes the importance of considering vascular origins in cases of atypical hematochezia, particularly in the absence of common gastrointestinal causes, and highlights the role of imaging and multidisciplinary management in diagnosing and treating such unusual presentations. CASE SUMMARY: A 75-year-old man with a history of hypertension presented with 12 d of hematochezia, experiencing bloody stools 7-8 times per day. Initial computed tomography (CT) scans revealed an aneurysmal rupture near the right internal iliac artery with suspected hematoma development. Hemoglobin levels progressively decreased to 7 g/dL. Emergency arterial angiography and iliac artery-covered stent placement were performed, followed by balloon angioplasty. Despite initial stabilization, minor rectal bleeding and abdominal pain persisted, leading to further diagnostic colonoscopy. This identified a neoplasm and potential perforation at the proximal rectum. An exploratory laparotomy confirmed the presence of a hematoma and an aneurysm invading the rectal wall, necessitating partial rectal resection, intestinal anastomosis, and ileostomy. Postoperative recovery was successful, with no further bleeding incidents and normal follow-up CT and colonoscopy results after six months. CONCLUSION: In cases of unusual gastrointestinal bleeding, it is necessary to consider vascular causes for effective diagnosis and intervention.

13.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583627

RESUMEN

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Asunto(s)
Metano , Óxido Nitroso , Peróxidos , Calidad del Agua , Metano/análisis , Óxido Nitroso/análisis , Peróxidos/análisis , Contaminantes Químicos del Agua/análisis , Gases de Efecto Invernadero/análisis
14.
Micromachines (Basel) ; 15(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542540

RESUMEN

In this paper, both fundamental SSP modes on a roofed metallic grating and its effective excitation of the bounded SSP mode by an injected electron beam on the structure are numerically examined and investigated in the THz regime. Apart from the bounded SSP mode on the metallic grating with open space, the introduced roofed metallic grating can generate a closed waveguide mode that occupies the dispersion region outside the light line. The closed waveguide mode shifts gradually to a higher frequency band with a decreased gap size, while the bounded SSP mode line becomes lower. The effective excitation of the bounded SSP mode on this roofed metallic grating is also implemented and studied by using a particle-in-cell simulation studio. The output SSP power spectrums with various gap sizes by the same electron beam on this roofed metallic grating are obtained and analyzed. The simulation results reveal that the generated SSP spectra show a slight red shift with a decreased gap size. This work on the excitation of the SSP mode using an electron beam can benefit the development of high-power compact THz radiation sources by utilizing the strong near-field confinement of SSPs on metallic gratings.

15.
Animal Model Exp Med ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477441

RESUMEN

BACKGROUND: Medulloblastoma (MB) is one of the most common malignant brain tumors that mainly affect children. Various approaches have been used to model MB to facilitate investigating tumorigenesis. This study aims to compare the recapitulation of MB between subcutaneous patient-derived xenograft (sPDX), intracranial patient-derived xenograft (iPDX), and genetically engineered mouse models (GEMM) at the single-cell level. METHODS: We obtained primary human sonic hedgehog (SHH) and group 3 (G3) MB samples from six patients. For each patient specimen, we developed two sPDX and iPDX models, respectively. Three Patch+/- GEMM models were also included for sequencing. Single-cell RNA sequencing was performed to compare gene expression profiles, cellular composition, and functional pathway enrichment. Bulk RNA-seq deconvolution was performed to compare cellular composition across models and human samples. RESULTS: Our results showed that the sPDX tumor model demonstrated the highest correlation to the overall transcriptomic profiles of primary human tumors at the single-cell level within the SHH and G3 subgroups, followed by the GEMM model and iPDX. The GEMM tumor model was able to recapitulate all subpopulations of tumor microenvironment (TME) cells that can be clustered in human SHH tumors, including a higher proportion of tumor-associated astrocytes and immune cells, and an additional cluster of vascular endothelia when compared to human SHH tumors. CONCLUSIONS: This study was the first to compare experimental models for MB at the single-cell level, providing value insights into model selection for different research purposes. sPDX and iPDX are suitable for drug testing and personalized therapy screenings, whereas GEMM models are valuable for investigating the interaction between tumor and TME cells.

16.
Genome Res ; 34(2): 256-271, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471739

RESUMEN

The formation of resting cysts commonly found in unicellular eukaryotes is a complex and highly regulated survival strategy against environmental stress that involves drastic physiological and biochemical changes. Although most studies have focused on the morphology and structure of cysts, little is known about the molecular mechanisms that control this process. Recent studies indicate that DNA N 6-adenine methylation (6mA) could be dynamically changing in response to external stimuli; however, its potential role in the regulation of cyst formation remains unknown. We used the ciliate Pseudocohnilembus persalinus, which can be easily induced to form cysts to investigate the dynamic pattern of 6mA in trophonts and cysts. Single-molecule real-time (SMRT) sequencing reveals high levels of 6mA in trophonts that decrease in cysts, along with a conversion of symmetric 6mA to asymmetric 6mA. Further analysis shows that 6mA, a mark of active transcription, is involved in altering the expression of encystment-related genes through changes in 6mA levels and 6mA symmetric-to-asymmetric conversion. Most importantly, we show that reducing 6mA levels by knocking down the DNA 6mA methyltransferase PpAMT1 accelerates cyst formation. Taken together, we characterize the genome-wide 6mA landscape in P. persalinus and provide insights into the role of 6mA in gene regulation under environmental stress in eukaryotes. We propose that 6mA acts as a mark of active transcription to regulate the encystment process along with symmetric-to-asymmetric conversion, providing important information for understanding the molecular response to environmental cues from the perspective of 6mA modification.


Asunto(s)
Metilación de ADN , Eucariontes , Eucariontes/genética , ADN/química , Regulación de la Expresión Génica , Adenina/química , Adenina/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-38330562

RESUMEN

Objective: This study investigates the efficacy of tangerine peel lemon glycerin extract oral spray in improving oral mucosal barrier, reducing microinflammation, and addressing malnutrition in maintenance dialysis (MHD) patients. Methods: Tangerine peel and dry lemon underwent glycerin extraction. From January 2021 to June 2022, 72 MHD patients with thirst were prospectively chosen at Sinopharm Gezhouba Central Hospital. Randomization divided them into an observation group (n=36) and a control group (n=36). Both received routine maintenance dialysis and chronic kidney disease management. Oral conditions were assessed using OHIP-14, a homemade visual thirst score scale, SFR, sAA, and saliva pH. Microinflammatory indexes (CRP, TNF-α, IL-6) and nutritional status indicators (Alb, PA, Hb) were measured. The observation group used 1ml of tangerine peel lemon glycerin extract with a pH value of 5.9~6.1 q6h, while the control group used 1ml of purified water q6h. Results: After 3 months, the observation group showed significant improvement in OHIP-14 and visual thirst score scale (P < .01). Saliva pH, CRP, TNF-α, and IL-6 levels decreased, and SAA activity, SFR, Alb, PA, and Hb levels increased significantly in the observation group compared to the control group (P < .01). Conclusions: Tangerine peel lemon glycerin spray demonstrates promise in improving the oral mucosal barrier, exhibiting antibacterial and anti-inflammatory properties that mitigate microinflammation and malnutrition. This finding suggests a connection between oral health, systemic pathology, psychological state, and social adaptability.

18.
Neuroreport ; 35(4): 250-257, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38305103

RESUMEN

Neuroinflammation is intimately associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). Alpha-lipoic acid (ALA), a disulfide antioxidant, has been shown to be neuroprotective in an in vivo model of neurological injury; however, the role of ALA in SAH has never been evaluated. In this study, the Sprague-Dawley rats SAH model was induced by endovascular perforation method. ALA was transplanted intravenously into rats, and SR-717, a stimulator of interferon genes (STING) agonist, was injected intraperitoneally. The effects of ALA on early brain injury were assayed by neurological score, hematoxylin and eosin staining and Nissl staining. Immunohistochemistry staining and Western blotting were used to analyze various proteins. ALA significantly reduced STING- NLRP3 protein expression and decreased cell death, which in turn mitigated the neurobehavioral dysfunction following SAH. Furthermore, coadministration of ALA and SR-717 promoted STING-NLRP3 signaling pathway activation following SAH, which reversed the inhibitory effect of ALA on STING-NLRP3 protein activation and increased the neurological deficits. In conclusion, ALA may be a promising therapeutic strategy for alleviating early brain injury after SAH.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Ácido Tióctico , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Transducción de Señal , Lesiones Encefálicas/metabolismo
19.
Animals (Basel) ; 14(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396509

RESUMEN

The aim of this study was to investigate the effects of dietary chitosan supplementation on the muscle composition, digestion, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia (Oreochromis niloticus) subjected to cadmium (Cd2+) stress. Juvenile tilapia with an initial body weight of 21.21 ± 0.24 g were fed with a formulated feed containing five different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan for 60 days, while the water in all experimental groups contained a Cd2+ concentration of 0.2 mg/L. The results showed that, compared with the control group (0% chitosan), the contents of crude fat and crude protein in the muscle, the activities of lipase, trypsin, and amylase in the intestine, as well as the relative expression levels of metallothionein (mt), cytochrome P450 1A (cyp1a), carnitine palmitoyltransferase-1 (cpt-1), peroxisome proliferator-activated receptor alpha (pparα), peroxisome proliferator-activated receptor gamma (pparγ), hormone-sensitive lipase (hsl), lipoprotein lipase (lpl), malate dehydrogenase (mdh), leptin (lep), fatty acid synthase (fas), sterol regulatory element-binding protein 1 (srebp1), and stearoyl-CoA desaturase (scd) genes in the liver of juveniles were significantly increased (p < 0.05). In conclusion, dietary chitosan supplementation could alleviate the effects of Cd2+ stress on the muscle composition, digestive enzymes, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia, and to some extent reduce the toxic effect of Cd2+ stress on tilapia.

20.
Biochem Biophys Res Commun ; 701: 149612, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316091

RESUMEN

Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.


Asunto(s)
Estrés del Retículo Endoplásmico , Daño por Reperfusión , Humanos , Respuesta de Proteína Desplegada , Intestinos , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA