Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Pharm X ; 7: 100258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38912324

RESUMEN

Vincristine (VCR), as a cytotoxic drug, is used clinically to treat acute lymphatic leukemia and breast cancer, and commonly used clinically as vincristine sulfate (VCRS). However, its clinical use is limited by unpredictable pharmacologic characteristics, a narrow therapeutic index, and neurotoxicity. The pH gradient method was used for active drug loading of VCRS, and the process route mainly includes the preparation of blank liposomes and drug-loaded liposomes. VCRS liposomes had suitable particle size, high encapsulation efficiency and good stability. The loading and release kinetics of VCRS liposomes were explored. By calculating the changes of encapsulation efficiency with time at different temperatures, it was confirmed that the drug-loading process of liposomes exhibited a first-order kinetic feature, and the activation energy required for the reaction was determined as 20.6 kcal/mol. The release behavior at different pH was also investigated, and it was demonstrated that the release behavior conformed to the first-order model, suggesting that the release mechanism of VCRS was simple transmembrane diffusion. VCRS liposomes also enhanced in vitro and in vivo antitumor activity. Thus, VCRS liposomes showed great potential for VCRS delivery, and the loading and release kinetics were well researched to provide a reference for investigating active drug loading liposomes.

2.
ACS Nano ; 18(24): 15557-15575, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38837909

RESUMEN

Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG2000-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens. The nanovaccines were designed to target the DLN and the tumor, facilitating the delivery of cargo into the cytoplasm. These dual-targeted nanovaccines improved antigen presentation and DC maturation, activated the stimulator of interferon genes (STING) pathway, enhanced the pro-apoptotic effect, and stimulated antitumor immune responses. Additionally, these dual-targeted nanovaccines overcame immunosuppressive TME, reduced immunosuppressive cells, and promoted the polarization of tumor-associated neutrophils from N2 to N1. Among the four dual-targeted nanovaccines that induced robust antitumor responses, the heterocyclic lipidoid@polyester hybrid nanovaccines (MALO@HBNS) demonstrated the most promising results. Furthermore, a combination strategy involving MALO@HBNS and an anti-PD-L1 antibody exhibited an immensely powerful anticancer role. This work introduced a dual-targeted nanovaccine platform for antitumor treatment, suggesting its potential combination with an immune checkpoint blockade as a comprehensive anticancer strategy.


Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Nanopartículas , Poliésteres , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/química , Animales , Ratones , Poliésteres/química , Nanopartículas/química , Ratones Endogámicos C57BL , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Células Dendríticas/inmunología , Femenino , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Lípidos/química , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Línea Celular Tumoral , ARN Interferente Pequeño/química , Ácido Hialurónico/química , Nanovacunas
3.
RSC Adv ; 14(1): 568-576, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173603

RESUMEN

To avoid the undesired bacterial attachment on polyurethane-based biomedical devices, we designed a class of novel perfluoropolyether-incorporated polyurethanes (PFPU) containing different contents of perfluoropolyether (PFPE) segments. After blending with Ag nanoparticles (AgNPs), a series of bifunctional PFPU/AgNPs composites with bactericidal and anti-adhesion abilities were obtained and correspondingly made into PFPU/AgNPs films (PFPU/Ag-F) using a simple solvent-casting method. Due to its highest hydrophobicity and suitable mechanical properties, PFPU8/Ag-F containing 8 mol% of PFPE content was chosen as the optimized one for the next antibacterial assessment. The PFPU8/Ag-F can effectively deactivate over 99.9% of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) cells at 106 CFU mL-1 within 30 min. Furthermore, the PFPU8/AgNPs composite was used as painting material to form a protective coating for the commercial polyurethane (PU) catheter. The as-prepared PFPU8/Ag coating exhibits high resistance to bacterial adhesion in a continuous-flow artificial urine model in an 8 day exposure. Therefore, it can be expected that the proposed PFPE-containing films and coatings can effectively prevent bacterial colonization and biofilm formation on catheters or other implants, thereby reducing the risk of postoperative catheter-induced infection.

4.
Phys Med Biol ; 69(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38035376

RESUMEN

Objective.Intravascular optical coherence tomography is a useful tool to assess stent adherence and dilation, thus guiding percutaneous coronary intervention and minimizing the risk of surgery. However, each pull-back OCT images may contain thousands of stent struts, which are tiny and dense, making manual stent labeling slow and costly for medical resources.Approach. This paper proposed a multiple attention convolutional model for automatic stent struts detection of OCT images. Multiple attention mechanisms were utilized to strengthen the feature extraction and feature fusion capabilities. In addition, to precisely detect tiny stent struts, the model integrated multiple anchor frames to predict targets in the output.Main results. The model was trained in 4625 frames OCT images of 37 patients and tested in 1156 frames OCT images of 9 patients, and achieved a precision of 0.9790 and a recall of 0.9541, which were significantly better than mainstream convolutional models. In terms of detection speed, the model achieved 25.2 ms per image. OCT images from different collection systems, collection times, and challenging scenarios were experimentally tested, and the model demonstrated stable robustness, achieving precision and recall higher than 0.9630. Meanwhile, clear 3D construction of the stent was achieved.Significance. In conclusion, the proposed model solves the problems of slow manual analysis and occupying a large amount of medical manpower resources. It enhances the detection efficiency of tiny and dense stent struts, thus facilitating the application of OCT quantitative analysis in real clinical scenarios.


Asunto(s)
Intervención Coronaria Percutánea , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Stents , Vasos Coronarios , Resultado del Tratamiento
5.
Int J Biol Macromol ; 253(Pt 8): 127690, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37898254

RESUMEN

Docetaxel (DTX) has become one of the most important cytotoxic drugs to treat cancer; nevertheless, its poor hydrophilicity and non-specific distribution of DTX lead to detrimental side effects. In this article, we devised carboxymethylcellulose (CMC)-conjugated polymeric prodrug micelles (mPEG-CMC-DTX PMs) for DTX delivery. The ester-bonded polymeric prodrug, mPEG-CMC-DTX, was synthesized and exhibited the capacity for self-assembling into polymeric micelles. The CMC is profusely substituted and acetylated to promote the coupling rate of DTX. Covalent binding of DTX and CMC through an ester bond can be hydrolyzed to dissociate the bond under the action of esterase in the tumor. The mPEG-CMC-DTX PMs displayed promoted drug loading (>50 %, wt), commendable stability, and sustained release behavior in vitro. The gradual release of the prodrug amplified the selectivity of cytotoxicity between normal cells and tumor cells, mitigating the systemic toxicity of mPEG-CMC-DTX PMs and enabling dose intensification. Notably, mPEG-CMC-DTX PMs demonstrated a superior antitumor efficacy and low systemic toxicity due to the elevated tolerance dosage (even at 40 mg/kg DTX). In summation, mPEG-CMC-DTX PMs harmonized the antitumor efficacy and toxicity of DTX. In essence, innovative perspectives for the rational design of CMC-conjugated polymeric prodrug micelles for the delivery of potently toxic drugs were proffered.


Asunto(s)
Antineoplásicos , Profármacos , Docetaxel/farmacología , Micelas , Profármacos/farmacología , Carboximetilcelulosa de Sodio , Taxoides/química , Polietilenglicoles/química , Antineoplásicos/química , Polímeros/química , Ésteres , Línea Celular Tumoral
6.
Int J Pharm ; 646: 123500, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37820944

RESUMEN

As the only Food and Drug Administration (FDA)-approved dual-encapsulation liposome injection for treating Acute myeloid leukemia (AML), CPX-351 outperforms the standard chemotherapy treatment "DA 7 + 3″ in terms of clinical effectiveness. Although research on dual-loaded liposomes has increased in recent years, little attention has been paid to their preparation, which can affect their quality, efficacy, and safety. This study explored various preparation processes to create the cytarabine/daunorubicin co-loaded liposome (the Cyt/Daun liposome) and eventually settled on two methods: the sequential loading approach, thin film hydration-extrusion-copper ion gradient, and the simultaneous encapsulation technique, copper ion gradient-concentration gradient. Different preparation methods resulted in different particle sizes and encapsulation efficiencies; the two aforementioned preparation processes generated dual-loaded liposomes with comparable physicochemical properties. The sequential encapsulation technique was selected for the subsequent research owing to its higher encapsulation efficiency prior to purification; the prepared Cyt/Daun liposomes had small and uniform particle size (108.6 ± 1.02 nm, Polydispersity index (PDI) 0.139 ± 0.01), negative charge (-(60.2 ± 1.15) mV), high drug encapsulation efficiency (Cyt 88.2 ± 0.24 %, Duan 94.2 ± 0.45 %) and good plasma stability. To improve its storage stability, the Cyt/Daun liposome was lyophilized (-40 °C for 4 h, maintained for 130 min, and dried for 1200 min) using sucrose-raffinose (mass ratio 7:3; glycolipid ratio 4:1, w/w) as a lyoprotectant. The lyophilized liposomes were purple cakes, redissolved rapidly with insignificant alterations in particle size and encapsulation efficiency, and possessed well storage stability. The pharmacokinetic and tissue distribution studies demonstrated that the Cyt/Daun liposome could achieve long circulation and maintain synergic proportions of drugs within 24 h, increasing the accumulation of drugs at tumor sites. Furthermore, the in vitro/in vivo pharmacodynamic studies confirmed its good anti-tumor activity and safety.


Asunto(s)
Leucemia Mieloide Aguda , Liposomas , Humanos , Liposomas/uso terapéutico , Cobre/uso terapéutico , Daunorrubicina , Leucemia Mieloide Aguda/tratamiento farmacológico , Citarabina
7.
Colloids Surf B Biointerfaces ; 232: 113599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857183

RESUMEN

Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed. This study aims to examine the therapeutic effects of the combination of intratumoral injection of NLEH and sorafenib in treating HCC. Sorafenib combined with NLEH activated the apoptosis pathway by synergistically upregulating caspase-9, promoting cytotoxicity, apoptosis (64.57%), and G2/M cell cycle arrest (48.96%). Norcantharidin could alleviate sorafenib resistance by counteracting sorafenib-induced phosphorylation of Akt. Additionally, intratumoral injection of NLEH exhibited a sustained accumulation in the tumor within 24 h and didn't distribute to other major organs. Intratumoral injection of NLEH in combination with oral sorafenib displayed the most potent tumor growth inhibitory effect (77.91%) in vivo. H&E staining results and the indicators of the renal and liver function tests demonstrated the safety of this combination therapy. Overall, these results showed that intratumoral injection of NLEH in combination with oral sorafenib treatment represented a rational potential therapeutic option for HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Liposomas/farmacología , Neoplasias Hepáticas/patología , Emulsiones/farmacología , Inyecciones Intralesiones , Línea Celular Tumoral , Apoptosis , Proliferación Celular
8.
Biomater Sci ; 11(19): 6619-6634, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37608695

RESUMEN

Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 (STAT3) siRNA were delivered to the tumor. The PEG BR647-NPs were internalized by tumor-associated dendritic cells (TADCs), where the TAA and siRNA were released into the cytoplasm via the endo/lysosome escape effect. The released OVA was presented by the major histocompatibility complex class I to activate T cells, and the released STAT3 siRNA acted to relieve TADC dysfunction, promote TADC maturation, improve antigen-presenting ability, and enhance anticancer T cell immunity. Meanwhile, the PEG BR647-NPs were ingested by tumor cells, killing them by the pro-apoptosis effect of STAT3 siRNA. Moreover, PEG BR647-NPs could reduce the proportion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumors and abrogate immunosuppression. The integration of relieved TADC dysfunction, promoted TADC maturation, enhanced antigen cross-presentation, abrogated immunosuppression, and improved pro-apoptosis effect boosted the vaccination for tumor immunotherapy. Thus, PEG BR647-NPs efficiently delivered the vaccine and STAT3 siRNA to the tumor and modulated immunosuppressive TME, thus providing better antitumor effects.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , ARN Interferente Pequeño , Poliésteres/farmacología , Microambiente Tumoral , Células Dendríticas , Neoplasias/patología , Antígenos de Neoplasias , Inmunoterapia , Presentación de Antígeno , Lípidos
9.
Int J Surg ; 109(3): 297-312, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928390

RESUMEN

BACKGROUND: Multiple primary lung cancer (MPLC) is becoming increasingly common in clinical practice. Imaging examination is sometimes difficult to differentiate from intrapulmonary metastasis (IM) or single primary lung cancer (SPLC) before surgery. There is a lack of effective blood biomarkers as an auxiliary diagnostic method. PARTICIPANTS AND METHODS: A total of 179 patients who were hospitalized and operated in our department from January to June 2019 were collected, and they were divided into SPLC with 136 patients, MPLC with 24 patients, and IM with 19 patients. In total, 96 healthy people without lung cancer were enrolled. Medical history, imaging, and pathology data were assembled from all participants. Plasma metabolomics analysis was performed by quadrupole time-of-flight tandem mass spectrometry, and data were analyzed using SPSS19.0/Simca 14.1/MetaboAnalyst5.0 software. Significant metabolites were selected by variable importance in projection, P value, and fold change. The area under the receiver operating characteristic curve was used to evaluate their diagnostic ability. RESULTS: There were significant differences in plasma metabolite profiles between IM and MPLC. Seven metabolites were screened out. Two metabolites had higher levels in IM, and five metabolites had higher levels in MPLC. All had favorable discriminating capacity. Phosphatidyl ethanolamine (38:5) showed the highest sensitivity (0.95) and specificity (0.92). It was followed by l -histidine with sensitivity 0.92 and specificity 0.84. l -tyrosine can be used to identify SPLC and MPLC. The panel composed of related metabolites exhibited higher diagnostic ability. Eight principal metabolites caused remarkable differences between healthy people and MPLC, and five of them had area under the curves greater than 0.85, showing good discriminating power. CONCLUSION: Through the study of plasma metabolomics, it was found that there were obvious differences in the metabolite profiles of MPLC, IM, SPLC, and the healthy population. Some discovered metabolites possessed excellent diagnostic competence with high sensitivity and specificity. They had the potential to act as biomarkers for the screening and differential diagnosis of MPLCs.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Primarias Múltiples , Humanos , Diagnóstico Diferencial , Detección Precoz del Cáncer , Metabolómica/métodos , Biomarcadores
10.
Sci Adv ; 9(7): eade4770, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800421

RESUMEN

The introduction of unnatural chemical moieties into glycosaminoglycans (GAGs) has enormous potential to facilitate studies of the mechanism and application of these critical, widespread molecules. Unnatural N-acetylhexosamine analogs were metabolically incorporated into the capsule polysaccharides of Escherichia coli and Bacillus subtilis via bacterial metabolism. Targeted metabolic labeled hyaluronan and the precursors of heparin and chondroitin sulfate were obtained. The azido-labeled polysaccharides (purified or in capsules) were reacted with dyes, via bioorthogonal chemistry, to enable detection and imaging. Site-specific introduction of fluorophores directly onto cell surfaces affords another choice for observing and quantifying bacteria in vivo and in vitro. Furthermore, azido-polysaccharides retain similar biological properties to their natural analogs, and reliable and predictable introduction of functionalities, such as fluorophores, onto azido-N-hexosamines in the disaccharide repeat units provides chemical tools for imaging and metabolic analysis of GAGs in vivo and in vitro.


Asunto(s)
Escherichia coli , Glicosaminoglicanos , Glicosaminoglicanos/química , Escherichia coli/metabolismo , Polisacáridos , Heparina , Sulfatos de Condroitina , Polisacáridos Bacterianos
11.
Expert Opin Drug Deliv ; 20(1): 145-158, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462209

RESUMEN

BACKGROUND: Copper diethyldithiocarbamate (Cu(DDC)2) has been demonstrated to possess excellent antitumor activity. However, the extremely poor water solubility of Cu(DDC)2 bring difficulty for its formulation research. In this study, we aim to develop a novel nanocarrier for Cu(DDC)2 delivery to overcome this obstacle and enhance antitumor activity. METHODS: The SP94 modified asymmetrical bilayer lipid-encapsulated Cu(DDC)2 nanoparticles (DCDP) was established by combining the method of inverse microemulsion aggregation and thin-film dispersion. In vitro cellular assays and in vivo tumor-xenograft experiments were conducted to evaluate the tumor chemotherapeutic effect of DCDP. And the vital role of copper ions played in DSF or DDC (DSF/DDC)-based cancer chemotherapy was also explored. RESULTS: DCDP with an encapsulation efficiency (EE%) of 74.0% were successfully prepared. SP94 modification facilitated cellular intake for DCDP, and promoted apoptosis to repress tumor cell proliferation (IC50, 200 nM). And DCDP effectively inhibited tumor growth with a high tumor inhibition rate of 74.84%. Furthermore, Cu(DDC)2 was found to facilitate the copper ion accumulation in tumor tissues, which is beneficial to therapy with high potency. CONCLUSION: DCDP exhibited high-efficient tumor chemotherapeutic efficacy and provided a novel strategy for investigating the anticancer mechanism of Cu(DDC)2.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Cobre/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Lípidos , Línea Celular Tumoral , Descarboxilasas de Aminoácido-L-Aromático
12.
Int J Pharm ; 628: 122361, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36332828

RESUMEN

PD-1/L1 checkpoint blockade has gained approval in terms of treating patients suffering from hepatocellular carcinoma (HCC). It should be noted that the PD-1/L1 inhibitor (α-PD-1/L1) has a low overall response rate when used as a single agent. Accordingly, the combination of α-PD-1/L1 and a series of therapies to further increase the response rate has become a major research direction. In our previous study, we developed a novel norcantharidin (NCTD) liposome emulsion hybrid delivery system (NE) with enhanced anticancer activity and reduced toxicity. In this study, NE was combined with α-PD-1/L1 for treating HCC. The combination therapy exhibited an enhanced antitumor activity, which led to the up-regulated expression levels of white blood cells, interleukin 12 (IL-12), interferon γ (IFN-γ), PD-L1, as well as CD8. Furthermore, the combination of NE and α-PD-1 achieved the optimal efficiency. NCTD-based chemotherapy is capable of synergizing with α-PD-1/L1 while enhancing checkpoint immunotherapy. It follows a mechanism that NCTD agonizes the non-canonical NF-κB pathway of dendritic cells for better activating CD8+T cells. Furthermore, NCTD may enhance antitumor immunity due to the leukogenic effect. In brief, new therapeutic regimens were provided for anti-HCC treatment by integrating NE to PD-1/L1 immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1/metabolismo , Liposomas/uso terapéutico , FN-kappa B , Emulsiones , Carcinoma Hepatocelular/patología , Inmunoterapia , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular Tumoral
13.
J Oncol ; 2022: 9460019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046366

RESUMEN

Background: The lung is one of the most common metastatic sites of malignant tumors. Early detection of pulmonary metastatic carcinoma can effectively reduce relative cancer mortality. Human metabolomics is a qualitative and quantitative study of low-molecular metabolites in the body. By studying the plasm metabolomics of patients with pulmonary metastatic carcinoma or other lung diseases, we can find the difference in plasm levels of low-molecular metabolites among them. These metabolites have the potential to become biomarkers of lung metastases. Methods: Patients with pulmonary nodules admitted to our department from February 1, 2019, to May 31, 2019, were collected. According to the postoperative pathological results, they were divided into three groups: pulmonary metastatic carcinoma (PMC), benign pulmonary nodules (BPN), and primary lung cancer (PLC). Moreover, healthy people who underwent physical examination were enrolled as the healthy population group (HPG) during the same period. On the one hand, to study lung metastases screening in healthy people, PMC was compared with HPG. The multivariate statistical analysis method was used to find the significant low-molecular metabolites between the two groups, and their discriminating ability was verified by the ROC curve. On the other hand, from the perspective of differential diagnosis of lung metastases, three groups with different pulmonary lesions (PMC, BPN, and PLC) were compared as a whole, and then the other two groups were compared with PMC, respectively. The main low-molecular metabolites were selected, and their discriminating ability was verified. Results: In terms of lung metastases screening for healthy people, four significant low-molecular metabolites were found by comparison of PMC and HPG. They were O-arachidonoyl ethanolamine, adrenoyl ethanolamide, tricin 7-diglucuronoside, and p-coumaroyl vitisin A. In terms of the differential diagnosis of pulmonary nodules, the significant low-molecular metabolites selected by the comparison of the three groups as a whole were anabasine, octanoylcarnitine, 2-methoxyestrone, retinol, decanoylcarnitine, calcitroic acid, glycogen, and austalide L. For the comparison of PMC and BPN, L-tyrosine, indoleacrylic acid, and lysoPC (16 : 0) were selected, while L-octanoylcarnitine, retinol, and decanoylcarnitine were selected for the comparison of PMC and PLC. Their AUCs of ROC are all greater than 0.80. It indicates that these substances have a strong ability to differentiate between pulmonary metastatic carcinoma and other pulmonary nodule lesions. Conclusion: Through the research of plasm metabolomics, it is possible to effectively detect the changes in some low-molecular metabolites among primary lung cancer, pulmonary metastatic carcinoma, and benign pulmonary nodule patients and healthy people. These significant metabolites have the potential to be biomarkers for screening and differential diagnosis of lung metastases.

14.
Int J Pharm ; 621: 121788, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35504431

RESUMEN

The old alcohol-aversion drug disulfiram (DSF) has aroused wide attention as a drug repurposing strategy in terms of cancer therapy because of the high antitumor efficacy in combination with copper ion. However, numerous defects of DSF (e.g., the short half-life and acid instability) have limited the application in cancer treatment. Cu (DDC)2, the complex of diethyldithiocarbamate (DDC, DSF metabolite) and Cu2+, have been proven as the vital active component on cancer, which have aroused the attention of researchers from DSF to Cu (DDC)2. However, the poor water solubility of Cu (DDC)2 increase more difficulties to the treatment and in-depth investigations of Cu (DDC)2. In this study, sphingomyelin (SM)-based PEGylated liposomes (SM/Chol/DSPE-mPEG2000 (55:40:5, mole%)) were produced as the carriers for Cu (DDC)2 delivery to enhance the water solubility. DDC was added to Cu-containing liposomes with a higher encapsulation efficiency of more than 90%, and it reacted with Cu2+ to synthesize Cu (DDC)2. Due to the high phase transition temperature of SM and strong intermolecular hydrogen bonds with cholesterol, SM-based liposomes would be conducive to enhancing the stability of Cu (DDC)2 and preventing drug leakage during delivery. As proven by pharmacokinetic studies, loading Cu (DDC)2 into liposomes improve bioavailability, and the area under the curve (AUC0-t) and the mean elimination half-life (t1/2) increased 1.9-time and 1.3-time to those of free Cu (DDC)2, respectively. Furthermore, the anticancer effect of Cu (DDC)2 was enhanced by the liposomal encapsulation, thus resulting in remarkable cell apoptosis in vitro and a tumor-inhibiting rate of 77.88% in vivo. Thus, it was concluded that Cu (DDC)2 liposomes could be promising in cancer treatment.


Asunto(s)
Liposomas , Neoplasias , Descarboxilasas de Aminoácido-L-Aromático/uso terapéutico , Línea Celular Tumoral , Cobre/química , Disulfiram/química , Ditiocarba/química , Ditiocarba/farmacocinética , Humanos , Liposomas/química , Neoplasias/tratamiento farmacológico , Esfingomielinas/uso terapéutico , Agua
15.
Micromachines (Basel) ; 13(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35630275

RESUMEN

The Negative Bias Temperature Instability (NBTI) effect of partially depleted silicon-on-insulator (PDSOI) PMOSFET based on 130 nm is investigated. First, the effect of NBTI on the IV characteristics and parameter degradation of T-Gate PDSOI PMOSFET was investigated by accelerated stress tests. The results show that NBTI leads to a threshold voltage negative shift, saturate drain current reduction and transconductance degradation of the PMOSFET. Next, the relationship between the threshold voltage shift and stress time, gate bias and temperature, and the channel length is investigated, and the NBTI lifetime prediction model is established. The results show that the NBTI lifetime of a 130 nm T-Gate PDSOI PMOSFET is approximately 18.7 years under the stress of VG = -1.2 V and T = 125 °C. Finally, the effect of the floating-body effect on NBTI of PDSOI PMOSFET is investigated. It is found that the NBTI degradation of T-Gate SOI devices is greater than that of the floating-body SOI devices, which indicates that the floating-body effect suppresses the NBTI degradation of SOI devices.

16.
Expert Opin Drug Deliv ; 19(4): 451-464, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35385376

RESUMEN

BACKGROUND: Norcantharidin (NCTD) has a certain degree of hydrophilicity and poor lipophilicity, and has some side-effects, including short t1/2, vascular irritation, cardiotoxicity, and nephrotoxicity, which bring difficulties for formulation research. In this study, we aim to develop a novel nanocarrier to improve encapsulation efficiency, increase sterilization stability, and enhance antitumor activity. METHODS: Phospholipid complexes methods were used for increasing the lipophilicity of norcantharidin (NCTD), then NCTD phospholipid complexes were not only loaded in the oil phase and oil-water interface surface, but also encapsulated in phospholipid bilayers to obtain NCTD liposome-emulsion hybrid (NLEH) delivery system. The in vitro cytotoxicity and apoptosis, in vivo tissue distribution, tumor penetration, heterotopic, and orthotopic antitumor studies were conducted to evaluate therapeutic effect. RESULTS: NLEH exhibited an improved encapsulation efficiency (89.3%) and a better sterilization stability, compared to NCTD liposomes and NCTD emulsions. NLEH can achieve a better antitumor activity by promoting absorption (1.93-fold), prolonging blood circulation (2.08-fold), enhancing tumor-targeting accumulation (1.19 times), improving tumor penetration, and increasing antitumor immunity. CONCLUSIONS: The liposome-emulsion hybrid (LEH) delivery system was potential carrier for NCTD delivery, and LEH could open opportunities for delivery of poorly soluble anticancer drugs, especially drugs that are more hydrophilicity than lipophilicity.


Asunto(s)
Antineoplásicos , Liposomas , Antineoplásicos/farmacología , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Emulsiones , Fosfolípidos
17.
Front Oncol ; 11: 693353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650911

RESUMEN

BACKGROUND: CD8+ T cells are one of the central effector cells in the immune microenvironment. CD8+ T cells play a vital role in the development and progression of lung adenocarcinoma (LUAD). This study aimed to explore the key genes related to CD8+ T-cell infiltration in LUAD and to develop a novel prognosis model based on these genes. METHODS: With the use of the LUAD dataset from The Cancer Genome Atlas (TCGA), the differentially expressed genes (DEGs) were analyzed, and a co-expression network was constructed by weighted gene co-expression network analysis (WGCNA). Combined with the CIBERSORT algorithm, the gene module in WGCNA, which was the most significantly correlated with CD8+ T cells, was selected for the subsequent analyses. Key genes were then identified by co-expression network analysis, protein-protein interactions network analysis, and least absolute shrinkage and selection operator (Lasso)-penalized Cox regression analysis. A risk assessment model was built based on these key genes and then validated by the dataset from the Gene Expression Omnibus (GEO) database and multiple fluorescence in situ hybridization experiments of a tissue microarray. RESULTS: Five key genes (MZT2A, ALG3, ATIC, GPI, and GAPDH) related to prognosis and CD8+ T-cell infiltration were identified, and a risk assessment model was established based on them. We found that the risk score could well predict the prognosis of LUAD, and the risk score was negatively related to CD8+ T-cell infiltration and correlated with the advanced tumor stage. The results of the GEO database and tissue microarray were consistent with those of TCGA. Furthermore, the risk score was higher significantly in tumor tissues than in adjacent lung tissues and was correlated with the advanced tumor stage. CONCLUSIONS: This study may provide a novel risk assessment model for prognosis prediction and a new perspective to explore the mechanism of tumor immune microenvironment related to CD8+ T-cell infiltration in LUAD.

18.
J Cell Mol Med ; 25(14): 7039-7051, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34117717

RESUMEN

Despite the previous evidence showing that SHC adaptor protein 1 (SHC1) could encode three distinct isoforms (p46SHC, p52SHC and p66SHC) that function in different activities such as regulating life span and Ras activation, the precise underlying role of SHC1 in lung cancer also remains obscure. In this study, we firstly found that SHC1 expression was up-regulated both in lung adenocarcinoma (LUAD) and in lung squamous cell carcinoma (LUSC) tissues. Furthermore, compared to patients with lower SHC1 expression, LUAD patients with higher expression of SHC1 had poorer overall survival (OS). Moreover, higher expression of SHC1 was also associated with worse OS in patients with stages 1 and 2 but not stage 3 lung cancer. Significantly, the analysis showed that SHC1 methylation level was associated with OS in lung cancer patients. It seemed that the methylation level at specific probes within SHC1 showed negative correlations with SHC1 expression both in LUAD and in LUSC tissues. The LUAD and LUSC patients with hypermethylated SHC1 at cg12473916 and cg19356022 probes had a longer OS. Therefore, it is reasonable to conclude that SHC1 has a potential clinical significance in LUAD and LUSC patients.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Metilación de ADN , Neoplasias Pulmonares/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
19.
Int J Pharm ; 602: 120619, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887396

RESUMEN

Combination, synergistic chemotherapy with gemcitabine (GEM) and cisplatin (CDDP) is a common strategy, and has been recommended for tumor treatment due to its promoted therapeutic effect and reduced systemic toxicity. However, this process involves the intravenous infusion of GEM prior to that of CDDP, which is inconvenient for patients and staff. Here, a novel hybrid nano-carrier system comprised of micelles encapsulated within PEGylated liposomes is proposed, in order to combine the unique strengths of each component. CDDP was bonded with PLG-PEG, and then the formed CDDP@PLG-PEG micelles and GEM were co-loaded inside PEGylated liposomes. The hybrid liposomes with the optimized GEM/CDDP ratio (1:0.6) showed a roughly spherical morphology, appropriate drug loading, and sustained release behavior. In vitro, the hybrid liposomes had 1.72-fold increased cellular uptake, and 57.42%-fold decreased IC50 value. In vivo, pharmacokinetic studies showed increased t1/2 values (125.64%- and 128.57%-folds for GEM and CDDP), decreased clearance (41.90%- and 2.37%-folds), and promoted AUC (262.76%- and 4577.24%-folds). Finally, an in vivo antitumor study showed effective activity in regards to lung tumor size and weight, which were 40.48%- and 33.11%-folds that of GEM/CDDP solution. In summary, we demonstrated the development of an effective micelle-containing PEGylated hybrid liposomes for combined GEM/CDDP delivery.


Asunto(s)
Antineoplásicos , Micelas , Línea Celular Tumoral , Cisplatino , Desoxicitidina/análogos & derivados , Humanos , Liposomas , Polietilenglicoles , Gemcitabina
20.
Microb Cell Fact ; 20(1): 62, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33663495

RESUMEN

Valuable polysaccharides are usually produced using wild-type or metabolically-engineered host microbial strains through fermentation. These hosts act as cell factories that convert carbohydrates, such as monosaccharides or starch, into bioactive polysaccharides. It is desirable to develop effective in vivo high-throughput approaches to screen cells that display high-level synthesis of the desired polysaccharides. Uses of single or dual fluorophore labeling, fluorescence quenching, or biosensors are effective strategies for cell sorting of a library that can be applied during the domestication of industrial engineered strains and metabolic pathway optimization of polysaccharide synthesis in engineered cells. Meanwhile, high-throughput screening strategies using each individual whole cell as a sorting section are playing growing roles in the discovery and directed evolution of enzymes involved in polysaccharide biosynthesis, such as glycosyltransferases. These enzymes and their mutants are in high demand as tool catalysts for synthesis of saccharides in vitro and in vivo. This review provides an introduction to the methodologies of using cell-based high-throughput screening for desired polysaccharide-biosynthesizing cells, followed by a brief discussion of potential applications of these approaches in glycoengineering.


Asunto(s)
Bacterias/metabolismo , Ensayos Analíticos de Alto Rendimiento , Polisacáridos Bacterianos/biosíntesis , Polisacáridos/biosíntesis , Bacterias/genética , Técnicas Biosensibles , Evolución Molecular Dirigida , Fluorescencia , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Ingeniería Metabólica , Monosacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA