Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chembiochem ; 24(18): e202300368, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406107

RESUMEN

Enzymatic hydroxylation of fatty acids by Cytochrome P450s (CYPs) offers an eco-friendly route to hydroxy fatty acids (HFAs), high-value oleochemicals with various applications in materials industry and with potential as bioactive compounds. However, instability and poor regioselectivity of CYPs are their main drawbacks. A newly discovered self-sufficient CYP102 enzyme, BAMF0695 from Bacillus amyloliquefaciens DSM 7, exhibits preference for hydroxylation of sub-terminal positions (ω-1, ω-2, and ω-3) of fatty acids. Our studies show that BAMF0695 has a broad temperature optimum (over 70 % of maximal enzymatic activity retained between 20 to 50 °C) and is highly thermostable (T50 >50 °C), affording excellent adaptive compatibility for bioprocesses. We further demonstrate that BAMF0695 can utilize renewable microalgae lipid as a substrate feedstock for HFA production. Moreover, through extensive site-directed and site-saturation mutagenesis, we isolated variants with high regioselectivity, a rare property for CYPs that usually generate complex regioisomer mixtures. BAMF0695 mutants were able to generate a single HFA regiosiomer (ω-1 or ω-2) with selectivities from 75 % up to 91 %, using C12 to C18 fatty acids. Overall, our results demonstrate the potential of a recent CYP and its variants for sustainable and green production of high-value HFAs.


Asunto(s)
Bacillus amyloliquefaciens , Bacillus amyloliquefaciens/metabolismo , Ácidos Grasos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Especificidad por Sustrato
2.
Food Chem ; 320: 126627, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213421

RESUMEN

For the last two decades there has been a rise in awareness about the general low dietary intake of vitamin D3. Fish have the highest natural content of vitamin D3, which is suggested to originate from zooplankton and microalgae. However there are no studies reporting which microalgal species may be the source of vitamin D3. In this study, four selected microalgal species were cultivated during exposure of artificial UVB. The effect of UVB dose on the growth and biochemical composition of the cells (vitamin D3, PUFAs and carotenoids) was evaluated. Of the four species, exclusively Nannochloropsis oceanica was able to produce vitamin D3 (up to 1 ± 0.3 µg/g DM), and production was significantly enhanced by increasing the dose of the UVB. These findings suggest that N.oceanica exposed to artificial UVB could be used as a new natural source of vitamin D3, either as direct source or through animal feed.


Asunto(s)
Productos Biológicos/química , Colecalciferol/análisis , Microalgas/química , Estramenopilos/química
3.
Chembiochem ; 21(4): 550-563, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31465143

RESUMEN

Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high-value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA-HY2 has a narrow substrate scope and strict regioselectivity, whereas FA-HY1 utilizes longer chain substrates and hydrates various double-bond positions. It is revealed that three active-site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA-HY2 are mutated to the corresponding ones in FA-HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω-end of FAs is observed. A three-residue mutant of FA-HY2 (TM-FA-HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10-OH/13-OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM-FA-HY2 converted eicosapentaenoic acid into its 12-hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor-made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields.


Asunto(s)
Proteínas Bacterianas , Ácidos Grasos/metabolismo , Hidrolasas , Lactobacillus acidophilus/enzimología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Hidrolasas/biosíntesis , Hidrolasas/química , Cinética , Ingeniería de Proteínas , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA