Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Antiviral Res ; 231: 106013, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326503

RESUMEN

Nipah virus (NiV) causes near-annual outbreaks of fatal encephalitis and respiratory disease in South Asia with a high mortality rate (∼70%). Since there are no approved therapeutics for NiV disease in humans, the WHO has designated NiV and henipaviral diseases priority pathogens for research and development. We generated a new recombinant green fluorescent reporter NiV of the circulating Bangladesh genotype (rNiV-B-ZsG) and optimized it alongside our previously generated Malaysian genotype reporter counterpart (rNiV-M-ZsG) for antiviral screening in primary-like human respiratory cell types. Validating our platform for rNiV-B-ZsG with a synthetic compound library directed against viral RNA-dependent RNA polymerases, we identified a hit compound and confirmed its sub-micromolar activity against wild-type NiV, green fluorescent reporter, and the newly constructed bioluminescent red fluorescent double reporter (rNiV-B-BREP) NiV. We furthermore demonstrated that rNiV-B-ZsG and rNiV-B-BREP viruses showed pathogenicity comparable to wild-type NiV-B in the Syrian golden hamster model of disease, supporting additional use of these tools for both pathogenesis and advanced pre-clinical studies in vivo.

2.
Emerg Microbes Infect ; 13(1): 2398640, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39194145

RESUMEN

Nipah virus (NiV) is an emerging zoonotic RNA virus that can cause fatal respiratory and neurological diseases in animals and humans. Accurate NiV diagnostics and surveillance tools are crucial for the identification of acute and resolved infections and to improve our understanding of NiV transmission and circulation. Here, we have developed and validated a split NanoLuc luciferase NiV glycoprotein (G) biosensor for detecting antibodies in clinical and animal samples. This assay is performed by simply mixing reagents and measuring luminescence, which depends on the complementation of the split NanoLuc luciferase G biosensor following its binding to antibodies. This anti-NiV-G "mix-and-read" assay was validated using the WHO's first international standard for anti-NiV antibodies and more than 700 serum samples from the NiV-endemic country of Bangladesh. Anti-NiV antibodies from survivors persisted for at least 8 years according to both ⍺NiV-G mix-and-read and NiV neutralization assays. The ⍺NiV-G mix-and-read assay sensitivity (98.6%) and specificity (100%) were comparable to anti-NiV IgG ELISA performance but failed to detect anti-NiV antibodies in samples collected less than a week following the appearance of symptoms. Overall, the anti-NiV-G biosensor represents a simple, fast, and reliable tool that could support the expansion of NiV surveillance and retrospective outbreak investigations.


Asunto(s)
Anticuerpos Antivirales , Técnicas Biosensibles , Infecciones por Henipavirus , Virus Nipah , Virus Nipah/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infecciones por Henipavirus/diagnóstico , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/virología , Humanos , Técnicas Biosensibles/métodos , Animales , Bangladesh/epidemiología , Luciferasas/genética , Sensibilidad y Especificidad , Femenino , Adulto , Ensayo de Inmunoadsorción Enzimática/métodos , Masculino , Adolescente , Adulto Joven , Persona de Mediana Edad
3.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557950

RESUMEN

Surgical procedures, including nerve reconstruction and end-organ muscle reinnervation, have become more prominent in the prosthetic field over the past decade. Primarily developed to increase the functionality of prosthetic limbs, these surgical procedures have also been found to reduce postamputation neuropathic pain. Today, some of these procedures are performed more frequently for the management and prevention of postamputation pain than for prosthetic fitting, indicating a significant need for effective solutions to postamputation pain. One notable emerging procedure in this context is the Regenerative Peripheral Nerve Interface (RPNI). RPNI surgery involves an operative approach that entails splitting the nerve end longitudinally into its main fascicles and implanting these fascicles within free denervated and devascularized muscle grafts. The RPNI procedure takes a proactive stance in addressing freshly cut nerve endings, facilitating painful neuroma prevention and treatment by enabling the nerve to regenerate and innervate an end organ, i.e., the free muscle graft. Retrospective studies have shown RPNI's effectiveness in alleviating postamputation pain and preventing the formation of painful neuromas. The increasing frequency of utilization of this approach has also given rise to variations in the technique. This article aims to provide a step-by-step description of the RPNI procedure, which will serve as the standardized procedure employed in an international, randomized controlled trial (ClinicalTrials.gov, NCT05009394). In this trial, RPNI is compared to two other surgical procedures for postamputation pain management, specifically, Targeted Muscle Reinnervation (TMR) and neuroma excision coupled with intra-muscular transposition and burying.


Asunto(s)
Neuralgia , Neuroma , Humanos , Amputación Quirúrgica , Neuroma/cirugía , Nervios Periféricos/cirugía , Nervios Periféricos/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Retrospectivos
4.
J Vis Exp ; (205)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526122

RESUMEN

Over the past decade, the field of prosthetics has witnessed significant progress, particularly in the development of surgical techniques to enhance the functionality of prosthetic limbs. Notably, novel surgical interventions have had an additional positive outcome, as individuals with amputations have reported neuropathic pain relief after undergoing such procedures. Subsequently, surgical techniques have gained increased prominence in the treatment of postamputation pain, including one such surgical advancement - targeted muscle reinnervation (TMR). TMR involves a surgical approach that reroutes severed nerves as a type of nerve transfer to "target" motor nerves and their accompanying motor end plates within nearby muscles. This technique originally aimed to create new myoelectric sites for amplified electromyography (EMG) signals to enhance prosthetic intuitive control. Subsequent work showed that TMR also could prevent the formation of painful neuromas as well as reduce postamputation neuropathic pain (e.g., Residual and Phantom Limb Pain). Indeed, multiple studies have demonstrated TMR's effectiveness in mitigating postamputation pain as well as improving prosthetic functional outcomes. However, technical variations in the procedure have been identified as it is adopted by clinics worldwide. The purpose of this article is to provide a detailed step-by-step description of the TMR procedure, serving as the foundation for an international, randomized controlled trial (ClinicalTrials.gov, NCT05009394), including nine clinics in seven countries. In this trial, TMR and two other surgical techniques for managing postamputation pain will be evaluated.


Asunto(s)
Neuralgia , Miembro Fantasma , Humanos , Amputación Quirúrgica , Músculo Esquelético/inervación , Procedimientos Neuroquirúrgicos , Miembro Fantasma/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
J Infect Dis ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064677

RESUMEN

Nipah virus (NiV) is a highly pathogenic paramyxovirus. The Syrian hamster model recapitulates key features of human NiV disease and is a critical tool for evaluating antivirals and vaccines. Here we describe longitudinal humoral immune responses in NiV-infected Syrian hamsters. Samples were obtained 1-28 days after infection and analyzed by ELISA, neutralization, and Fc-mediated effector function assays. NiV infection elicited robust antibody responses against the nucleoprotein and attachment glycoprotein. Levels of neutralizing antibodies were modest and only detectable in surviving animals. Fc-mediated effector functions were mostly observed in nucleoprotein-targeting antibodies. Antibody levels and activities positively correlated with challenge dose.

6.
Antiviral Res ; 219: 105718, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37758067

RESUMEN

Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.


Asunto(s)
Antivirales , Profármacos , Antivirales/farmacología , Profármacos/farmacología , Nucleósidos/farmacología , Glicerol , Lípidos/farmacología
7.
Virology ; 587: 109858, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544045

RESUMEN

Nipah virus (NiV) is a highly pathogenic paramyxovirus with a high case fatality rate. Due to its high pathogenicity, pandemic potential, and lack of therapeutics or approved vaccines, its study requires biosafety level 4 (BSL4) containment. In this report, we developed a novel neutralization assay for use in biosafety level 2 laboratories. The assay uses a recombinant vesicular stomatitis virus expressing NiV glycoprotein and a fluorescent protein. The recombinant virus propagates as a replication-competent virus in a cell line constitutively expressing NiV fusion protein, but it is restricted to a single round of replication in wild-type cells. We used this system to evaluate the neutralization activity of monoclonal and polyclonal antibodies, plasma from NiV-infected hamsters, and serum from human patients. Therefore, this recombinant virus could be used as a surrogate for using pathogenic NiV and may constitute a powerful tool to develop therapeutics in low containment laboratories.

8.
Sci Adv ; 9(31): eadh4057, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540755

RESUMEN

Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Vacunas Virales , Cricetinae , Humanos , Animales , Ratones , Infecciones por Henipavirus/prevención & control , Infecciones por Henipavirus/genética , Vacunación , Modelos Animales de Enfermedad , Virus Nipah/genética , Replicón
9.
Methods Mol Biol ; 2682: 25-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37610571

RESUMEN

From its discovery in Malaysia in the late 1990s, the spillover of the Nipah virus from its pteropid reservoir into the human population has resulted in sporadic outbreaks of fatal encephalitis and respiratory disease. In this chapter, we revise a previously described quantitative reverse transcription polymerase chain reaction method, which now utilizes degenerate nucleotides at certain positions in the probe and the reverse primer to accommodate the sequence heterogeneity observed within the Nipah henipavirus species.


Asunto(s)
Encefalitis , Infecciones por Henipavirus , Humanos , Infecciones por Henipavirus/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Brotes de Enfermedades , Nucleótidos
10.
Methods Mol Biol ; 2682: 87-92, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37610575

RESUMEN

Spillovers of Nipah virus (NiV) from its pteropid bat reservoir into the human population continue to cause near-annual outbreaks of fatal encephalitis and respiratory disease in Bangladesh and India since its emergence in Malaysia over 20 years ago. The current lack of effective antiviral therapeutics against NiV merits further testing of compound libraries against NiV using rapid quantitative antiviral assays. The development of recombinant henipaviruses expressing reporter fluorescence and/or luminescence proteins has facilitated the screening of such libraries. In this chapter, we provide a basic protocol for both types of reporter viruses. Utilizing these live NiV-based reporter assays requires modest instrumentation and sidesteps the labor-intensive steps associated with traditional cytopathic effect or viral antigen-based assays.


Asunto(s)
Henipavirus , Humanos , Antivirales/farmacología , Bioensayo , Efecto Citopatogénico Viral , Brotes de Enfermedades
11.
Sci Rep ; 13(1): 11384, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452062

RESUMEN

Nipah virus (NiV), an emerging zoonotic pathogen in Southeast Asia, is transmitted from Pteropus species of fruit bats to a wide range of species, including humans, pigs, horses, dogs, and cats. NiV has killed millions of animals and caused highly fatal human outbreaks since no vaccine is commercially available. This study characterized the immunogenicity and safety of poxvirus-based Nipah vaccines that can be used in humans and species responsible for NiV transmission. Mice were vaccinated with modified vaccinia Ankara (MVA) and raccoon pox (RCN) viral vectors expressing the NiV fusion (F) and glycoprotein (G) proteins subcutaneously (SC) and intranasally (IN). Importantly, both vaccines did not induce significant weight loss or clinical signs of disease while generating high circulating neutralizing antibodies and lung-specific IgG and IgA responses. The MVA vaccine saw high phenotypic expression of effector and tissue resident memory CD8ɑ+ T cells in lungs and splenocytes along with the expression of central memory CD8ɑ+ T cells in lungs. The RCN vaccine generated effector memory (SC) and tissue resident (IN) CD8ɑ+ T cells in splenocytes and tissue resident (IN) CD8ɑ+ T cells in lung cells. These findings support MVA-FG and RCN-FG viral vectors as promising vaccine candidates to protect humans, domestic animals, and wildlife from fatal disease outcomes and to reduce the global threat of NiV.


Asunto(s)
Virus Nipah , Poxviridae , Vacunas Virales , Animales , Humanos , Gatos , Ratones , Perros , Porcinos , Caballos , Virus Vaccinia/genética , Vectores Genéticos/genética , Anticuerpos Antivirales
12.
Antiviral Res ; 216: 105658, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356729

RESUMEN

Remdesivir is a nucleotide prodrug with preclinical efficacy against lethal Nipah virus infection in African green monkeys when administered 1 day post inoculation (dpi) (Lo et al., 2019). Here, we determined whether remdesivir treatment was still effective when treatment administration initiation was delayed until 3 dpi. Three groups of six African green monkeys were inoculated with a lethal dose of Nipah virus, genotype Bangladesh. On 3 dpi, one group received a loading dose of 10 mg/kg remdesivir followed by daily dosing with 5 mg/kg for 11 days, one group received 10 mg/kg on 12 consecutive days, and the remaining group received an equivalent volume of vehicle solution. Remdesivir treatment initiation on 3 dpi provided partial protection from severe Nipah virus disease that was dose dependent, with 67% of animals in the high dose group surviving the challenge. However, remdesivir treatment did not prevent clinical disease, and surviving animals showed histologic lesions in the brain. Thus, early administration seems critical for effective remdesivir treatment during Nipah virus infection.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Animales , Chlorocebus aethiops , Infecciones por Henipavirus/tratamiento farmacológico , Infecciones por Henipavirus/prevención & control , Encéfalo , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacología , Alanina/uso terapéutico
13.
J Clin Med ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983424

RESUMEN

The increasing popularity of tattooing has paralleled an increase in associated cutaneous reactions. Red ink is notorious for eliciting cutaneous reactions. A common reaction is pseudoepitheliomatous hyperplasia (PEH), which is a benign condition closely simulating squamous cell carcinoma (SCC). Differentiating PEH from SCC is challenging for pathologists and clinicians alike. The exact pathogenesis of these lesions secondary to red ink is not known, and there are no sources outlining diagnostic and treatment options and their efficacy. We present four study cases with different pathologies associated to red ink tattoos including lichenoid reaction, granulomatous reaction, PEH, and an SCC. Additionally, an extensive review of 63 articles was performed to investigate pathogenesis, diagnostic approaches, and treatment options. Hypotheses surrounding pathogenesis include but are not limited to the carcinogenic components of pigments, their reaction with UV and the traumatic process of tattooing. Pathogenesis seems to be multifactorial. Full-thickness biopsies with follow-up is the recommended diagnostic approach. There is no evidence of a single universally successful treatment for PEH. Low-dose steroids are usually tried following a step up in lack of clinical response. For SCC lesions, full surgical excision is widely used. A focus on clinicians' awareness of adverse reactions is key for prevention. Regulation of the unmonitored tattoo industry remains an ongoing problem.

14.
Antivir Chem Chemother ; 30: 20402066221130853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36305015

RESUMEN

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Pandemias
15.
mBio ; 13(2): e0329421, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35297677

RESUMEN

Defective interfering particles (DIs) contain a considerably smaller genome than the parental virus but retain replication competency. As DIs can directly or indirectly alter propagation kinetics of the parental virus, they offer a novel approach to antiviral therapy, capitalizing on knowledge from natural infection. However, efforts to translate in vitro inhibition to in vivo screening models remain limited. We investigated the efficacy of virus-like particles containing DI genomes (therapeutic infectious particles [TIPs]) in the Syrian hamster model of lethal Nipah virus (NiV) disease. We found that coadministering a high dose of TIPs intraperitoneally with virus challenge improved clinical course and reduced lethality. To mimic natural exposure, we also evaluated lower-dose TIP delivery and virus challenge intranasally, finding equally efficacious reduction in disease severity and overall lethality. Eliminating TIP replicative capacity decreased efficacy, suggesting protection via direct inhibition. These data provide evidence that TIP-mediated treatment can confer protection against disease and lethal outcome in a robust animal NiV model, supporting further development of TIP treatment for NiV and other high-consequence pathogens. IMPORTANCE Here, we demonstrate that treatment with defective interfering particles (DIs), a natural by-product of viral infection, can significantly improve the clinical course and outcome of viral disease. When present with their parental virus, DIs can directly or indirectly alter viral propagation kinetics and exert potent inhibitory properties in cell culture. We evaluated the efficacy of a selection of virus-like particles containing DI genomes (TIPs) delivered intranasally in a lethal hamster model of Nipah virus disease. We demonstrate significantly improved clinical outcomes, including reduction in both lethality and the appearance of clinical signs. This work provides key efficacy data in a robust model of Nipah virus disease to support further development of TIP-mediated treatment against high-consequence viral pathogens.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Animales , Cricetinae , Modelos Animales de Enfermedad , Infecciones por Henipavirus/prevención & control , Mesocricetus , Virión
16.
J Early Hear Detect Interv ; 7(3): 6-15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38617119

RESUMEN

The study compares receipt and timeliness of newborn hearing screening and follow-up diagnostic services between the pre-pandemic birth cohort and the pandemic birth cohort in four participating states. Findings from this study will help inform state Early Hearing Detection and Intervention (EHDI) programs in the future should a major public health event occur again.

17.
Microbiol Spectr ; 9(3): e0153721, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34817209

RESUMEN

The necessity for intravenous administration of remdesivir confines its utility for treatment of coronavirus disease 2019 (COVID-19) to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524), against viruses that cause diseases of human public health concern, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had activity nearly equivalent to that of remdesivir in primary-like human small airway epithelial cells. Our results warrant in vivo efficacy evaluation of ODBG-P-RVn. IMPORTANCE While remdesivir remains one of the few drugs approved by the FDA to treat coronavirus disease 2019 (COVID-19), its intravenous route of administration limits its use to hospital settings. Optimizing the stability and absorption of remdesivir may lead to a more accessible and clinically potent therapeutic. Here, we describe an orally available lipid-modified version of remdesivir with activity nearly equivalent to that of remdesivir against emerging viruses that cause significant disease, including Ebola and Nipah viruses. Our work highlights the importance of such modifications to optimize drug delivery to relevant and appropriate human tissues that are most affected by such diseases.


Asunto(s)
Adenosina Monofosfato/uso terapéutico , Adenosina/uso terapéutico , Alanina/uso terapéutico , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Nucleósidos/uso terapéutico , Profármacos/uso terapéutico , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Éteres de Glicerilo/uso terapéutico , Humanos , Lípidos , SARS-CoV-2
18.
J Hazard Mater ; 416: 126069, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492895

RESUMEN

Concerns that airborne microplastics (MP) may be detrimental to human health are rising. However, research on the effects of MP on the respiratory system are limited. We tested the effect of MP exposure on both normal and asthmatic pulmonary physiology in mice. We show that MP exposure caused pulmonary inflammatory cell infiltration, bronchoalveolar macrophage aggregation, increased TNF-α level in bronchoalveolar lavage fluid (BALF), and increased plasma IgG1 production in normal mice. MP exposure also affected asthma symptoms by increasing mucus production and inflammatory cell infiltration with notable macrophage aggregation. Further, we found co-labeling of macrophage markers with MP incorporating fluorescence, which indicates phagocytosis of the MP by macrophages. A comparative transcriptomic analysis showed that MP exposure altered clusters of genes related to immune response, cellular stress response, and programmed cell death. A bioinformatics analysis further uncovered the molecular mechanism whereby MP stimulated production of tumor necrosis factor and immunoglobulins to activate a group of transmembrane B-cell antigens, leading to the modulation of cellular stress and programmed cell death in the asthma model. In summary, we show that MP exposure had detrimental effects on the respiratory system in both healthy and asthmatic mice, which calls for urgent discourse and action to mitigate environmental microplastic pollutants.


Asunto(s)
Asma , Microplásticos , Animales , Asma/inducido químicamente , Líquido del Lavado Bronquioalveolar , Pulmón , Ratones , Ratones Endogámicos BALB C , Plásticos
19.
bioRxiv ; 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34401879

RESUMEN

The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo.

20.
Virus Evol ; 7(1): veaa062, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34422315

RESUMEN

Despite near-annual human outbreaks of Nipah virus (NiV) disease in Bangladesh, typically due to individual spillover events from the local bat population, only twenty whole-genome NiV sequences exist from humans and ten from bats. NiV whole-genome sequences from annual outbreaks have been challenging to generate, primarily due to the low viral load in human throat swab and serum specimens. Here, we used targeted enrichment with custom NiV-specific probes and generated thirty-five additional unique full-length genomic sequences directly from human specimens and viral isolates. We inferred the temporal and geographic evolutionary history of NiV in Bangladesh and expanded a tool to visualize NiV spatio-temporal spread from a Bayesian continuous diffusion analysis. We observed that strains from Bangladesh segregated into two distinct clades that have intermingled geographically in Bangladesh over time and space. As these clades expanded geographically and temporally, we did not observe evidence for significant branch and site-specific selection, except for a single site in the Henipavirus L polymerase. However, the Bangladesh 1 and 2 clades are differentiated by mutations initially occurring in the polymerase, with additional mutations accumulating in the N, G, F, P, and L genes on external branches. Modeling the historic geographical and temporal spread demonstrates that while widespread, NiV does not exhibit significant genetic variation in Bangladesh. Thus, future public health measures should address whether NiV within in the bat population also exhibits comparable genetic variation, if zoonotic transmission results in a genetic bottleneck and if surveillance techniques are detecting only a subset of NiV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA