Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2306868120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579180

RESUMEN

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.


Asunto(s)
Diabetes Mellitus Tipo 2 , Naftoquinonas , Humanos , Adenosina Trifosfato , Línea Celular Tumoral , Difosfatos , Peróxido de Hidrógeno/metabolismo , Inositol , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Naftoquinonas/farmacología , Oxígeno , Especies Reactivas de Oxígeno/metabolismo
2.
FEBS J ; 290(20): 4899-4920, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329249

RESUMEN

Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.


Asunto(s)
COVID-19 , Nucleósidos , Humanos , ARN Mensajero/genética , Biomimética , SARS-CoV-2/genética , Adenosina
3.
Chembiochem ; 24(9): e202300133, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36942622

RESUMEN

S-Adenosylmethionine (SAM) is an enzyme cofactor involved in methylation, aminopropyl transfer, and radical reactions. This versatility renders SAM-dependent enzymes of great interest in biocatalysis. The usage of SAM analogues adds to this diversity. However, high cost and instability of the cofactor impedes the investigation and usage of these enzymes. While SAM regeneration protocols from the methyltransferase (MT) byproduct S-adenosylhomocysteine are available, aminopropyl transferases and radical SAM enzymes are not covered. Here, we report a set of efficient one-pot systems to supply or regenerate SAM and SAM analogues for all three enzyme classes. The systems' flexibility is showcased by the transfer of an ethyl group with a cobalamin-dependent radical SAM MT using S-adenosylethionine as a cofactor. This shows the potential of SAM (analogue) supply and regeneration for the application of diverse chemistry, as well as for mechanistic studies using cofactor analogues.


Asunto(s)
Biomimética , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Biocatálisis , Alquilación , Metilación , Metiltransferasas/metabolismo
4.
Angew Chem Int Ed Engl ; 61(32): e202204198, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35638156

RESUMEN

Methyl-coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2-(S)-methylglutamine. The enzyme responsible for the Cα -methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin-dependent radical SAM enzyme as the glutamine C-methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base-off, His-off conformation and contains a single [4Fe-4S] cluster. The cobalamin cofactor cycles between the methyl-cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5'-deoxyadenosine and S-adenosyl-l-homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C-methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3 -hybridized carbon atoms.


Asunto(s)
S-Adenosilmetionina , Vitamina B 12 , Glutamina/metabolismo , Metano , Metilación , Metiltransferasas/metabolismo , Oxidorreductasas , S-Adenosilmetionina/química , Vitamina B 12/química
5.
Angew Chem Int Ed Engl ; 59(10): 3776-3780, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31961479

RESUMEN

The 2019 Nobel Prize in Physiology or Medicine honours three scientists that devoted their careers to pursuing an audacious basic science question: by what mechanisms do animals sense oxygen, and how can cells adapt to a lack of oxygen? The identification of the human hypoxia inducible factor pathway has enabled new approaches for the therapy of related diseases including cancer, cardiovascular disease, anaemia, and stroke. The intricate molecular details of oxygen sensing broadened interest in the family of iron- and 2-oxoglutarate-dependent oxygenases known from elaborate natural product chemistry, and catalysed major progress in macromolecule hydroxylation. The laureates' work enables numerous avenues for molecular scientists, from C-H activation chemistry to PROTAC technology, medicinal chemistry, and epigenetics.


Asunto(s)
Hipoxia de la Célula , Neoplasias/metabolismo , Oxígeno/metabolismo , Animales , Humanos , Hidroxilación , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Neoplasias/patología , Oxígeno/química
6.
Chemistry ; 25(8): 2019-2024, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30427558

RESUMEN

Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.


Asunto(s)
Prolil Hidroxilasas , Inhibidores de Prolil-Hidroxilasa , Ribosomas/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/química , Inhibidores de Prolil-Hidroxilasa/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Ribosomas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Hypoxia (Auckl) ; 6: 57-71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519597

RESUMEN

BACKGROUND: In humans and other animals, the chronic hypoxic response is mediated by hypoxia inducible transcription factors (HIFs) which regulate the expression of genes that counteract the effects of limiting oxygen. Prolyl hydroxylases (PHDs) act as hypoxia sensors for the HIF system in organisms ranging from humans to the simplest animal Trichoplax adhaerens. METHODS: We report structural and biochemical studies on the T. adhaerens HIF prolyl hydroxylase (TaPHD) that inform about the evolution of hypoxia sensing in animals. RESULTS: High resolution crystal structures (≤1.3 Å) of TaPHD, with and without its HIFα substrate, reveal remarkable conservation of key active site elements between T. adhaerens and human PHDs, which also manifest in kinetic comparisons. CONCLUSION: Conserved structural features of TaPHD and human PHDs include those apparently enabling the slow binding/reaction of oxygen with the active site Fe(II), the formation of a stable 2-oxoglutarate complex, and a stereoelectronically promoted change in conformation of the hydroxylated proline-residue. Comparison of substrate selectivity between the human PHDs and TaPHD provides insights into the selectivity determinants of HIF binding by the PHDs, and into the evolution of the multiple HIFs and PHDs present in higher animals.

8.
Chembiochem ; 19(21): 2262-2267, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30144273

RESUMEN

In animals, the response to chronic hypoxia is mediated by upregulation of the α,ß-heterodimeric hypoxia-inducible factors (HIFs). Levels of HIFα isoforms, but not HIFß, are regulated by their post-translational modification as catalysed by prolyl hydroxylase domain enzymes (PHDs). Different roles for the human HIF-1/2α isoforms and their two oxygen-dependent degradation domains (ODDs) are proposed. We report kinetic and NMR analyses of the ODD selectivity of the catalytic domain of wild-type PHD2 (which is conserved in nearly all animals) and clinically observed variants. Studies using Ala scanning and "hybrid" ODD peptides imply that the relatively rigid conformation of the (hydroxylated) proline plays an important role in ODD binding. They also reveal differential roles in binding for the residues on the N- and C-terminal sides of the substrate proline. The overall results indicate how the PHDs achieve selectivity for HIFα ODDs and might be of use in identifying substrate-selective PHD inhibitors.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dominio Catalítico , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato
9.
Extremophiles ; 22(3): 553-562, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29523972

RESUMEN

YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular proliferation (Ge et al., Nat Chem Biol 12:960-962, 2012). Bioinformatic analysis identified a potential homologue of ycfD in the thermophilic bacterium Rhodothermus marinus (ycfDRM). We describe studies on the characterization of ycfDRM, which is a functional 2OG oxygenase catalysing (2S,3R)-hydroxylation of the ribosomal protein uL16 at R82, and which is active at significantly higher temperatures than previously reported for any other 2OG oxygenase. Recombinant ycfDRM manifests high thermostability (Tm 84 °C) and activity at higher temperatures (Topt 55 °C) than ycfDEC (Tm 50.6 °C, Topt 40 °C). Mass spectrometric studies on purified R. marinus ribosomal proteins demonstrate a temperature-dependent variation in uL16 hydroxylation. Kinetic studies of oxygen dependence suggest that dioxygen availability can be a limiting factor for ycfDRM catalysis at high temperatures, consistent with incomplete uL16 hydroxylation observed in R. marinus cells. Overall, the results that extend the known range of ribosomal hydroxylation, reveal the potential for ycfD-catalysed hydroxylation to be regulated by temperature/dioxygen availability, and that thermophilic 2OG oxygenases are of interest from a biocatalytic perspective.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Rhodothermus/enzimología , Proteínas Ribosómicas/metabolismo , Estabilidad de Enzimas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxilación , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodothermus/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Homología de Secuencia
10.
Biochemistry ; 54(39): 6093-105, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26368022

RESUMEN

The Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise a large and diverse enzyme superfamily the members of which have multiple physiological roles. Despite this diversity, these enzymes share a common chemical mechanism and a core structural fold, a double-stranded ß-helix (DSBH), as well as conserved active site residues. The prolyl hydroxylases are members of this large superfamily. Prolyl hydroxylases are involved in collagen biosynthesis and oxygen sensing in mammalian cells. Structural-mechanistic studies with prolyl hydroxylases have broader implications for understanding mechanisms in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we describe crystal structures of an N-terminally truncated viral collagen prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains the conserved DSBH motif and iron binding active site residues of 2-OG oxygenases. Molecular dynamics simulations are used to delineate structural changes in vCPH upon binding its substrate. Kinetic investigations are used to report on reaction cycle intermediates and compare them to the closest homologues of vCPH. The study highlights the utility of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)- and 2-OG-dependent dioxygenases, including those of biomedical interest.


Asunto(s)
Hierro/química , Phycodnaviridae/enzimología , Prolil Hidroxilasas/química , Proteínas Virales/química , Secuencias de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X
11.
Structure ; 23(4): 639-52, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25728928

RESUMEN

Post-translational ribosomal protein hydroxylation is catalyzed by 2-oxoglutarate (2OG) and ferrous iron dependent oxygenases, and occurs in prokaryotes and eukaryotes. OGFOD1 catalyzes trans-3 prolyl hydroxylation at Pro62 of the small ribosomal subunit protein uS12 (RPS23) and is conserved from yeasts to humans. We describe crystal structures of the human uS12 prolyl 3-hydroxylase (OGFOD1) and its homolog from Saccharomyces cerevisiae (Tpa1p): OGFOD1 in complex with the broad-spectrum 2OG oxygenase inhibitors; N-oxalylglycine (NOG) and pyridine-2,4-dicarboxylate (2,4-PDCA) to 2.1 and 2.6 Å resolution, respectively; and Tpa1p in complex with NOG, 2,4-PDCA, and 1-chloro-4-hydroxyisoquinoline-3-carbonylglycine (a more selective prolyl hydroxylase inhibitor) to 2.8, 1.9, and 1.9 Å resolution, respectively. Comparison of uS12 hydroxylase structures with those of other prolyl hydroxylases, including the human hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs), reveals differences between the prolyl 3- and prolyl 4-hydroxylase active sites, which can be exploited for developing selective inhibitors of the different subfamilies.


Asunto(s)
Proteínas Portadoras/química , Proteínas Nucleares/química , Inhibidores de Prolil-Hidroxilasa/farmacología , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
12.
J Biol Chem ; 289(44): 30499-30510, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25231979

RESUMEN

The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.


Asunto(s)
Metiltransferasas/genética , Factor 2 de Elongación Peptídica/metabolismo , Proteína Metiltransferasas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Conejos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(11): 4031-6, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550447

RESUMEN

2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Prolil Hidroxilasas/metabolismo , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Ribosómicas/metabolismo , Análisis de Varianza , Proteínas Portadoras/genética , Biología Computacional , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Hidroxilación , Immunoblotting , Inmunoprecipitación , Ácidos Cetoglutáricos/metabolismo , Luciferasas , Proteínas Nucleares/genética , Prolina/metabolismo , Biosíntesis de Proteínas/genética , Levaduras
14.
Proc Natl Acad Sci U S A ; 111(11): 4019-24, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550462

RESUMEN

The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Ribosómicas/metabolismo , Ribosomas/fisiología , Chlorophyta , Codón de Terminación/genética , Humanos , Hidroxilación , Espectrometría de Masas , Oxigenasas/genética , Oxigenasas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Schizosaccharomyces , Especificidad de la Especie
15.
Proc Natl Acad Sci U S A ; 111(11): 4025-30, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550463

RESUMEN

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Homeostasis/fisiología , Prolil Hidroxilasas/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Autofagia/genética , Western Blotting , Pesos y Medidas Corporales , Cromatografía Liquida , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Cuerpo Adiposo/citología , Femenino , Técnicas de Silenciamiento del Gen , Hidroxilación , Prolil Hidroxilasas/genética , Procesamiento Proteico-Postraduccional/fisiología , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/genética , Espectrometría de Masas en Tándem , Respuesta de Proteína Desplegada/genética
16.
Proc Natl Acad Sci U S A ; 110(30): 12444-9, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836663

RESUMEN

Viruses have evolved sophisticated strategies to exploit host cell function for their benefit. Here we show that under physiologically normal oxygen levels (normoxia) vaccinia virus (VACV) infection leads to a rapid stabilization of hypoxia-inducible factor (HIF)-1α, its translocation into the nucleus and the activation of HIF-responsive genes, such as vascular endothelial growth factor (VEGF), glucose transporter-1, and pyruvate dehydrogenase kinase-1. HIF-1α stabilization is mediated by VACV protein C16 that binds the human oxygen sensing enzyme prolyl-hydroxylase domain containing protein (PHD)2 and thereby inhibits PHD2-dependent hydroxylation of HIF-1α. The binding between C16 and PHD2 is direct and specific, and ectopic expression of C16 alone induces transcription of HIF-1α responsive genes. Conversely, a VACV strain lacking the gene for C16, C16L, is unable to induce HIF-1α stabilization. Interestingly, the N-terminal region of C16 is predicted to have a PHD2-like structural fold but lacks the catalytic active site residues of PHDs. The induction of a hypoxic response by VACV is reminiscent of the biochemical consequences of solid tumor formation, and illustrates a poxvirus strategy for manipulation of cellular gene expression and biochemistry.


Asunto(s)
Hipoxia de la Célula/fisiología , Virus Vaccinia/fisiología , Secuencia de Aminoácidos , Células HEK293 , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Datos de Secuencia Molecular , Procolágeno-Prolina Dioxigenasa/metabolismo , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Nat Chem Biol ; 8(12): 960-962, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23103944

RESUMEN

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/metabolismo , Células Procariotas/metabolismo , Ribosomas/metabolismo , Animales , Arginina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Dioxigenasas , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Histidina/metabolismo , Histona Demetilasas , Humanos , Hidroxilación , Espectroscopía de Resonancia Magnética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oxigenasas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo
18.
J Biol Chem ; 286(48): 41616-41625, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21914792

RESUMEN

N(ε)-Methylations of histone lysine residues play critical roles in cell biology by "marking" chromatin for transcriptional activation or repression. Lysine demethylases reverse N(ε)-methylation in a sequence- and methylation-selective manner. The determinants of sequence selectivity for histone demethylases have been unclear. The human JMJD2 (KDM4) H3K9 and H3K36 demethylases can be divided into members that act on both H3K9 and H3K36 and H3K9 alone. Kinetic, crystallographic, and mutagenetic studies in vitro and in cells on KDM4A-E reveal that selectivity is determined by multiple interactions within the catalytic domain but outside the active site. Structurally informed phylogenetic analyses reveal that KDM4A-C orthologues exist in all genome-sequenced vertebrates with earlier animals containing only a single KDM4 enzyme. KDM4D orthologues only exist in eutherians (placental mammals) where they are conserved, including proposed substrate sequence-determining residues. The results will be useful for the identification of inhibitors for specific histone demethylases.


Asunto(s)
Evolución Molecular , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/genética , Homología Estructural de Proteína , Animales , Cristalografía por Rayos X , Humanos , Mutagénesis , Relación Estructura-Actividad
20.
PLoS One ; 6(1): e16210, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21264265

RESUMEN

Human 2-oxoglutarate oxygenases catalyse a range of biological oxidations including the demethylation of histone and nucleic acid substrates and the hydroxylation of proteins and small molecules. Some of these processes are centrally involved in regulation of cellular responses to hypoxia. The ALKBH proteins are a sub-family of 2OG oxygenases that are defined by homology to the Escherichia coli DNA-methylation repair enzyme AlkB. Here we report evidence that ALKBH5 is probably unique amongst the ALKBH genes in being a direct transcriptional target of hypoxia inducible factor-1 (HIF-1) and is induced by hypoxia in a range of cell types. We show that purified recombinant ALKBH5 is a bona fide 2OG oxygenase that catalyses the decarboxylation of 2OG but appears to have different prime substrate requirements from those so far defined for other ALKBH family members. Our findings define a new class of HIF-transcriptional target gene and suggest that ALKBH5 may have a role in the regulation of cellular responses to hypoxia.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB , Línea Celular , Dioxigenasas , Humanos , Hipoxia , Proteínas de la Membrana , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Oxigenasas/genética , Oxigenasas/fisiología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA