Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gynecol Oncol ; 163(1): 85-92, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34372972

RESUMEN

BACKGROUND: Both incidence and mortality of uterine cancer are on the rise and mortality is higher for African American women. The aim of our study was to evaluate how Next Generation Sequencing (NGS) may facilitate identification of and intervention for treatment disparities when integrated into clinical workflows. RESULTS: Our cohort included 159 uterine cancer patients with recurrent/progressive and newly diagnosed advanced stage and/or high-risk histology. The most common tumor histological subtypes included EEC (n = 67), SEC (n = 34), UCS (n = 20), and mixed (n = 14). Black patients were most likely to present with aggressive histology: (SEC, 34.0%) and carcinosarcoma (UCS, 14.0%). The four most common mutations across all subtypes were TP53, PIK3CA, PTEN, and ARID1A. There was racial disparity between Black versus non-Black patients who were initiated on targeted therapy (28.2% vs. 38.2%, respectively) and clinical trial (15% vs. 22.6%, respectively). Compared to non-Black patients, Black patients had a significantly higher percentage TP53 mutations (p < 0.05) and a significantly lower percentage ARID1A mutations (p < 0.05). CONCLUSIONS: NGS for uterine malignancies provides actionable information for targetable mutations and/or clinical trial enrollment in most patients; further investigation is necessary to identify potentially modifiable factors contributing to current disparities that may improve targeted therapy uptake and clinical trial participation.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Terapia Molecular Dirigida , Mutación , Neoplasias Uterinas/tratamiento farmacológico , Adulto , Negro o Afroamericano , Anciano , Anciano de 80 o más Años , Proteínas de Unión al ADN/genética , Femenino , Genes p53 , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Factores de Transcripción/genética , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética
2.
Cancer Med ; 10(2): 709-717, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33369199

RESUMEN

OBJECTIVE: Patients with epithelial ovarian cancer (EOC) typically present with late-stage disease, posing a significant challenge to treatment. Although taxane and platinum-based chemotherapy plus surgical debulking are initially effective, EOC is marked by frequent recurrence with resistant disease. Immunotherapy represents an appealing treatment paradigm given the ability of immune cells to engage metastatic sites and impede recurrence; however, response rates to checkpoint blockade in ovarian cancer have been disappointing. Here, we tested whether class I HDAC inhibition can promote anti-tumor T cell responses in a spontaneous and nonspontaneous murine model of EOC. METHODS: We used the spontaneous Tg-MISIIR-Tag and nonspontaneous ID8 models of murine ovarian cancer to test this hypothesis. Whole tumor transcriptional changes were assessed using the nCounter PanCancer Mouse Immune Profiling Panel. Changes in select protein expression of regulatory and effector T cells were measured by flow cytometry. RESULTS: We found that treatment with the class I HDAC inhibitor entinostat upregulated pathways and genes associated with CD8 T cell cytotoxic function, while downregulating myeloid derived suppressor cell chemoattractants. Suppressive capacity of regulatory T cells within tumors and associated ascites was significantly reduced, reversing the CD8-Treg ratio. CONCLUSIONS: Our findings suggest class I HDAC inhibition can promote activation of intratumoral CD8 T cells, potentially by compromising suppressive networks within the EOC tumor microenvironment. In this manner, class I HDAC inhibition might render advanced-stage EOC susceptible to immunotherapeutic treatment modalities.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Ováricas/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Apoptosis , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/patología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Ther Adv Med Oncol ; 12: 1758835920913798, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32313567

RESUMEN

BACKGROUND: The Wnt/ß-catenin pathway is linked to tumorigenesis in a variety of tumors and promotes T cell exclusion and resistance to checkpoint inhibitors. We sought to determine whether a small molecule inhibitor of this pathway, WNT974, would impair tumor growth, affect gene expression patterns, and improve the immune response in human and murine ovarian cancer models. METHODS: Human ovarian cancer cells were treated with WNT974 in vitro. RNAseq libraries were constructed and differences in gene expression patterns between responders and nonresponders were compared to The Cancer Genome Atlas (TCGA). Mice with subcutaneous or intraperitoneal ID8 ovarian cancer tumors were treated with WNT974, paclitaxel, combination, or control. Tumor growth and survival were measured. Flow cytometry and ß-TCR repertoire analysis were used to determine the immune response. RESULTS: Gene expression profiling revealed distinct signatures in responders and nonresponders, which strongly correlated with T cell infiltration patterns in the TCGA analysis of ovarian cancer. WNT974 inhibited tumor growth, prevented ascites formation, and prolonged survival in mouse models. WNT974 increased the ratio of CD8+ T cells to T regulatory cells (Tregs) in tumors and enhanced the effector functions of infiltrating CD4+ and CD8+ T cells. Treatment also decreased the expression of inhibitory receptors on CD8+ T cells. Combining WNT974 with paclitaxel further reduced tumor growth, prolonged survival, and expanded the T cell repertoire. CONCLUSIONS: These findings suggest that inhibiting the Wnt/ß-catenin pathway may have a potent immunomodulatory effect in the treatment of ovarian cancer, particularly when combined with paclitaxel.

4.
Cancers (Basel) ; 12(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213921

RESUMEN

In ovarian cancer, upregulation of the Wnt/ß-catenin pathway leads to chemoresistance and correlates with T cell exclusion from the tumor microenvironment (TME). Our objectives were to validate these findings in an independent cohort of ovarian cancer subjects and determine whether inhibiting the Wnt pathway in a syngeneic ovarian cancer murine model could create a more T-cell-inflamed TME, which would lead to decreased tumor growth and improved survival. We preformed RNA sequencing in a cohort of human high grade serous ovarian carcinoma subjects. We used CGX1321, an inhibitor to the porcupine (PORCN) enzyme that is necessary for secretion of WNT ligand, in mice with established ID8 tumors, a murine ovarian cancer cell line. In order to investigate the effect of decreased Wnt/ß-catenin pathway activity in the dendritic cells (DCs), we injected ID8 cells in mice that lacked ß-catenin specifically in DCs. Furthermore, to understand how much the effects of blocking the Wnt/ß-catenin pathway are dependent on CD8+ T cells, we injected ID8 cells into mice with CD8+ T cell depletion. We confirmed a negative correlation between Wnt activity and T cell signature in our cohort. Decreasing WNT ligand production resulted in increases in T cell, macrophage and dendritic cell functions, decreased tumor burden and improved survival. Reduced tumor growth was found in mice that lacked ß-catenin specifically in DCs. When CD8+ T cells were depleted, CGX1321 treatment did not have the same magnitude of effect on tumor growth. Our investigation confirmed an increase in Wnt activity correlated with a decreased T-cell-inflamed environment; a relationship that was further supported in our pre-clinical model that suggests inhibiting the Wnt/ß-catenin pathway was associated with decreased tumor growth and improved survival via a partial dependence on CD8+ T cells.

5.
Cancer ; 124(24): 4657-4666, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30423192

RESUMEN

BACKGROUND: Ovarian cancer is poorly immunogenic; however, increased major histocompatibility complex class II (MHCII) expression correlates with improved immune response and prolonged survival in patients with ovarian cancer. The authors previously demonstrated that the histone deacetylase inhibitor entinostat increases MHCII expression on ovarian cancer cells. In the current study, they evaluated whether entinostat treatment and resultant MHCII expression would enhance beneficial immune responses and impair tumor growth in mice with ovarian cancer. METHODS: C57BL/6 mice bearing intraperitoneal ID8 tumors were randomized to receive entinostat 20 mg/kg daily versus control. Changes in messenger RNA (mRNA) expression of 46 genes important for antitumor immunity were evaluated using NanoString analysis, and multicolor flow cytometry was used to measure changes in protein expression and tumor-infiltrating immune cells. RESULTS: Entinostat treatment decreased the growth of both subcutaneously and omental ID8 tumors and prolonged survival in immunocompetent C57BL/6 mice. NanoString analysis revealed significant changes in mRNA expression in 21 of 46 genes, including increased expression of the MHCI pathway, the MHCII transactivator (CIITA), interferon γ, and granzyme B. C57BL/6 mice that received entinostat had increased MHCII expression on omental tumor cells and a higher frequency of tumor-infiltrating, CD8-positive T cells by flow cytometry. In immunocompromised mice, treatment with entinostat had no effect on tumor size and did not increase MHCII expression. CONCLUSIONS: In the current murine ovarian cancer model, entinostat treatment enhances beneficial immune responses. Moreover, these antitumor effects of entinostat are dependent on an intact immune system. Future studies combining entinostat with checkpoint inhibitors or other immunomodulatory agents may achieve more durable antitumor responses in patients with ovarian cancer.


Asunto(s)
Benzamidas/administración & dosificación , Antígenos de Histocompatibilidad Clase II/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Piridinas/administración & dosificación , Regulación hacia Arriba , Inmunidad Adaptativa , Animales , Benzamidas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase II/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Huésped Inmunocomprometido , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Medicina de Precisión , Piridinas/farmacología , Distribución Aleatoria , Transactivadores/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Mol Cancer Res ; 16(5): 813-824, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523763

RESUMEN

While high-grade serous ovarian carcinoma (HGSOC) is the most common histologic subtype of ovarian cancer, significant tumor heterogeneity exists. In addition, chemotherapy induces changes in gene expression and alters the mutational profile. To evaluate the notion that patients with HGSOC could be better classified for optimal treatment based on gene expression, we compared genetic variants [by DNA next-generation sequencing (NGS) using a 50 gene Ion Torrent panel] and gene expression (using the NanoString PanCancer 770 gene Panel) in the tumor from 20 patients with HGSOC before and after neoadjuvant chemotherapy (NACT). NGS was performed on plasma cell free DNA (cfDNA) on a select group of patients (n = 14) to assess the utility of using cfDNA to monitor these changes. A total of 86 genes had significant changes in RNA expression after NACT. Thirty-eight genetic variants (including SNPs) from 6 genes were identified in tumors pre-NACT, while 59 variants from 19 genes were detected in the cfDNA. The number of DNA variants were similar after NACT. Of the 59 variants in the plasma pre-NACT, only 6 persisted, whereas 33 of 38 specific variants in the tumor DNA remained unchanged. Pathway analysis showed the most significant alterations in the cell cycle and DNA damage pathways.Implications: Gene expression profiles at the time of interval debulking provide additional genetic information that could help impact treatment decisions after NACT; although, continued collection and analysis of matched tumor and cfDNA from multiple time points are needed to determine the role of cfDNA in the management of HGSOC. Mol Cancer Res; 16(5); 813-24. ©2018 AACR.


Asunto(s)
Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Terapia Neoadyuvante/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/patología
7.
Gynecol Oncol ; 143(3): 674-683, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27751590

RESUMEN

OBJECTIVE: Epithelial ovarian cancer continues to be the deadliest gynecologic malignancy. Patients with both diabetes mellitus and obesity have poorer outcomes, yet research correlating metabolic abnormalities, such as metabolic syndrome, to ovarian cancer risk and outcomes is lacking. This article reviews the literature regarding metabolic derangements and their relationship to epithelial ovarian cancer, with a focus on potential mechanisms behind these associations. METHODS: PubMed and Google Scholar were searched for articles in the English language regarding epithelial ovarian cancer, obesity, diabetes mellitus, and metabolic syndrome, with a focus on studies conducted since 1990. RESULTS: Obesity, type II diabetes mellitus, and metabolic syndrome have been associated with poor outcomes in epithelial ovarian cancer. More studies investigating the relationship between metabolic syndrome and epithelial ovarian cancer are needed. A variety of pathologic factors may contribute to cancer risk in patients with metabolic derangements, including altered adipokine and cytokine expression, altered immune responses to tumor cells, and changes in pro-tumorigenic signaling pathways. CONCLUSION: More research is needed to examine the effects of metabolic syndrome on epithelial ovarian cancer risk and mortality, as well as the underlying pathophysiologies in patients with obesity, diabetes mellitus, and metabolic syndrome that may be targeted for therapeutic intervention.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Síndrome Metabólico/epidemiología , Neoplasias Glandulares y Epiteliales/epidemiología , Obesidad/epidemiología , Neoplasias Ováricas/epidemiología , Adipoquinas/metabolismo , Carcinoma Epitelial de Ovario , Citocinas/inmunología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Inflamación/inmunología , Síndrome Metabólico/inmunología , Síndrome Metabólico/metabolismo , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Factores de Riesgo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA