Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
J Am Chem Soc ; 146(33): 23566-23573, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39121013

RESUMEN

In the push to achieve net-zero emissions by 2050, nuclear power will play an essential role alongside renewable wind and solar power, and correspondingly global interest and investment in this well-established technology is accelerating. The uranium present in seawater could support nuclear power generation for centuries, but traditional adsorptive separation strategies have proven ineffective for the selective extraction of uranium from this vast resource. Here, we report the synthesis of nanowires of a triazine-linked two-dimensional covalent organic framework via a solvent modulation approach, which can be used to access nanowire external diameters ranging from 50 to 200 nm. The 100 nm nanowires are exceptionally promising for the capture of uranium(VI) via photocatalytic reduction. Under simulated sunlight and without the use of sacrificial agents, the nanowires achieve a uranium uptake of 10.9 g/g from a 100 ppm uranyl(VI) solution, which is the highest reported to date among materials studied for photo and electrocatalytic uranium capture. Significantly, these nanowires exhibit a uranium adsorption capacity of 34.5 mg/g after exposure to seawater under irradiation for 42 days, a record among all materials reported to date for uranium capture.

2.
J Am Chem Soc ; 146(32): 22759-22776, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092909

RESUMEN

Porous solids can accommodate and release molecular hydrogen readily, making them attractive for minimizing the energy requirements for hydrogen storage relative to physical storage systems. However, H2 adsorption enthalpies in such materials are generally weak (-3 to -7 kJ/mol), lowering capacities at ambient temperature. Metal-organic frameworks with well-defined structures and synthetic modularity could allow for tuning adsorbent-H2 interactions for ambient-temperature storage. Recently, Cu2.2Zn2.8Cl1.8(btdd)3 (H2btdd = bis(1H-1,2,3-triazolo-[4,5-b],[4',5'-i])dibenzo[1,4]dioxin; CuI-MFU-4l) was reported to show a large H2 adsorption enthalpy of -32 kJ/mol owing to π-backbonding from CuI to H2, exceeding the optimal binding strength for ambient-temperature storage (-15 to -25 kJ/mol). Toward realizing optimal H2 binding, we sought to modulate the π-backbonding interactions by tuning the pyramidal geometry of the trigonal CuI sites. A series of isostructural frameworks, Cu2.7M2.3X1.3(btdd)3 (M = Mn, Cd; X = Cl, I; CuIM-MFU-4l), was synthesized through postsynthetic modification of the corresponding materials M5X4(btdd)3 (M = Mn, Cd; X = CH3CO2, I). This strategy adjusts the H2 adsorption enthalpy at the CuI sites according to the ionic radius of the central metal ion of the pentanuclear cluster node, leading to -33 kJ/mol for M = ZnII (0.74 Å), -27 kJ/mol for M = MnII (0.83 Å), and -23 kJ/mol for M = CdII (0.95 Å). Thus, CuICd-MFU-4l provides a second, more stable example of optimal H2 binding energy for ambient-temperature storage among reported metal-organic frameworks. Structural, computational, and spectroscopic studies indicate that a larger central metal planarizes trigonal CuI sites, weakening the π-backbonding to H2.

3.
J Am Chem Soc ; 146(34): 23831-23841, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39149836

RESUMEN

Chromium and arsenic are two of the most problematic water pollutants due to their high toxicity and prevalence in various water streams. While adsorption and ion-exchange processes have been applied for the efficient removal of numerous toxic contaminants, including heavy metals, from water, these technologies display relatively low overall performances and stabilities for the remediation of chromium and arsenic oxyanions. This work presents the use of polyol-functionalized porous aromatic framework (PAF) adsorbent materials that use chelation, ion-exchange, redox activity, and hydrogen-bonding interactions for the highly selective capture of chromium and arsenic from water. The chromium and arsenic binding mechanisms within these materials are probed using an array of characterization techniques, including X-ray absorption and X-ray photoelectron spectroscopies. Adsorption studies reveal that the functionalized porous aromatic frameworks (PAFs) achieve selective, near-instantaneous (reaching equilibrium capacity within 10 s), and high-capacity (2.5 mmol/g) binding performances owing to their targeted chemistries, high porosities, and high functional group loadings. Cycling tests further demonstrate that the top-performing PAF material can be recycled using mild acid and base washes without any measurable performance loss over at least ten adsorption-desorption cycles. Finally, we establish chemical design principles enabling the selective removal of chromium, arsenic, and boron from water. To achieve this, we show that PAFs appended with analogous binding groups exhibit differences in adsorption behavior, revealing the importance of binding group length and chemical identity.

4.
J Am Chem Soc ; 146(34): 23943-23954, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39149845

RESUMEN

Monomethylamine (NH2CH3), dimethylamine (NH(CH3)2), and trimethylamine (N(CH3)3) are important chemical feedstocks that are produced industrially as an azeotropic mixture and must be separated using an energy-intensive thermal distillation. While solid adsorbents have been proposed as alternatives to distillation for separating various industrial gas mixtures, methylamine separations remain largely unexplored in this context. Here, we investigate two isoreticular frameworks Cu(cyhdc) (cyhdc2- = trans-1,4-cyclohexanedicarboxylate) and Cu(bdc) (bdc2- = 1,4-benzenedicarboxylate) as prospective candidates for this challenging separation, motivated by the recent discovery that Cu(cyhdc) reversibly captures ammonia through a unique framework-to-coordination polymer phase change. Through a combination of gas adsorption and powder X-ray diffraction analyses, we find that Cu(cyhdc) and Cu(bdc) reversibly bind large quantities of mono- and dimethylamine through framework-to-coordination polymer phase change mechanisms, although both frameworks adsorb only moderate amounts of trimethylamine via physisorption. Single-crystal X-ray diffraction analysis of select mono- and dimethylamine containing phases suggests that the number of hydrogen bond donors available and the linker donor strength are key factors influencing amine uptake. Finally, investigation of the tricomponent adsorption behavior of both materials reveals that Cu(cyhdc) is selective for the capture of monomethylamine from a range of mono-, di-, and trimethylamine mixtures.

5.
J Am Chem Soc ; 146(31): 21280-21295, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39044394

RESUMEN

The actinide elements are attractive alternatives to transition metals or lanthanides for the design of exchange-coupled multinuclear single-molecule magnets. However, the synthesis of such compounds is challenging, as is unraveling any contributions from exchange coupling to the overall magnetism. To date, only a few actinide compounds have been shown to exhibit exchange coupling and single-molecule magnetism. Here, we report triangular uranium(III) clusters of the type (CpiPr5)3U3X (1-X; X = Cl, Br, I; CpiPr5 = pentaisopropylcyclopentadienyl), which are synthesized via reaction of the aryloxide-bridged precursor (CpiPr5)2U2(OPhtBu)4 with excess Me3SiX. Spectroscopic analysis suggests the presence of covalency in the uranium-halide interactions arising from 5f orbital participation in bonding. The dc magnetic susceptibility data reveal the presence of antiferromagnetic exchange coupling between the uranium(III) centers in these compounds, with the strength of the exchange decreasing down the halide series. Ac magnetic susceptibility data further reveal all compounds to exhibit slow magnetic relaxation under zero dc field. In 1-I, which exhibits particularly weak exchange, magnetic relaxation occurs via a Raman mechanism associated with the individual uranium(III) centers. In contrast, for 1-Br and 1-Cl, magnetic relaxation occurs via an Orbach mechanism, likely involving relaxation between ground and excited exchange-coupled states. Significantly, in the case of 1-Cl, magnetic relaxation is sufficiently slow such that open magnetic hysteresis is observed up to 2.75 K, and the compound exhibits a 100-s blocking temperature of 2.4 K. This compound provides the first example of magnetic blocking in a compound containing only actinide-based ions, as well as the first example involving the uranium(III) oxidation state.

6.
ACS Energy Lett ; 9(6): 2727-2735, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903404

RESUMEN

Materials-based H2 storage plays a critical role in facilitating H2 as a low-carbon energy carrier, but there remains limited guidance on the technical performance necessary for specific applications. Metal-organic framework (MOF) adsorbents have shown potential in power applications, but need to demonstrate economic promises against incumbent compressed H2 storage. Herein, we evaluate the potential impact of material properties, charge/discharge patterns, and propose targets for MOFs' deployment in long-duration energy storage applications including backup, load optimization, and hybrid power. We find that state-of-the-art MOF could outperform cryogenic storage and 350 bar compressed storage in applications requiring ≤8 cycles per year, but need ≥5 g/L increase in uptake to be cost-competitive for applications that require ≥30 cycles per year. Existing challenges include manufacturing at scale and quantifying the economic value of lower-pressure storage. Lastly, future research needs are identified including integrating thermodynamic effects and degradation mechanisms.

7.
J Am Chem Soc ; 146(27): 18714-18721, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38924484

RESUMEN

Mixed-valence dilanthanide complexes of the type (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Gd, Tb, Dy) featuring a direct Ln-Ln σ-bonding interaction have been shown to exhibit well-isolated high-spin ground states and, in the case of the Tb and Dy variants, a strong axial magnetic anisotropy that gives rise to a large magnetic coercivity. Here, we report the synthesis and characterization of two new mixed-valence dilanthanide compounds in this series, (CpiPr5)2Ln2I3 (1-Ln; Ln = Ho, Er). Both compounds feature a Ln-Ln bonding interaction, the first such interaction in any molecular compounds of Ho or Er. Like the Tb and Dy congeners, both complexes exhibit high-spin ground states arising from strong spin-spin coupling between the lanthanide 4f electrons and a single σ-type lanthanide-lanthanide bonding electron. Beyond these similarities, however, the magnetic properties of the two compounds diverge. In particular, 1-Er does not exhibit observable magnetic blocking or slow magnetic relaxation, while 1-Ho exhibits magnetic blocking below 28 K, which is the highest temperature among Ho-based single-molecule magnets, and a spin reversal barrier of 556(4) cm-1. Additionally, variable-field magnetization data collected for 1-Ho reveal a coercive field of greater than 32 T below 8 K, more than 6-fold higher than observed for the bulk magnets SmCo5 and Nd2Fe14B, and the highest coercive field reported to date for any single-molecule magnet or molecule-based magnetic material. Multiconfigurational calculations, supported by far-infrared magnetospectroscopy data, reveal that the stark differences in magnetic properties of 1-Ho and 1-Er arise from differences in the local magnetic anisotropy of the lanthanide centers.

8.
Phys Chem Chem Phys ; 26(15): 11980-11987, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573245

RESUMEN

The L2,3-edge X-ray absorption spectra of late transition metals such as Cu, Ag, and Au exhibit absorption onsets lower in energy for higher oxidation states, which is at odds with the measured spectra of earlier transition metals. Time-dependent density functional theory calculations for Cu2+/Cu+ reveal a larger 2p core-exciton binding energy for Cu2+, overshadowing shifts in single-particle excitation energies with respect to Cu+. We explore this phenomenon in a Cu+ metal-organic framework with ∼12% Cu2+ defects and find that corrections with self-consistent excited-state total energy differences provide accurate XAS peak alignment.

9.
J Am Chem Soc ; 146(9): 6072-6083, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400985

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.

10.
Phys Chem Chem Phys ; 26(8): 6490-6511, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324335

RESUMEN

A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal-organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sorbent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experimentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.

11.
J Am Chem Soc ; 146(5): 3160-3170, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38276891

RESUMEN

High or enriched-purity O2 is used in numerous industries and is predominantly produced from the cryogenic distillation of air, an extremely capital- and energy-intensive process. There is significant interest in the development of new approaches for O2-selective air separations, including the use of metal-organic frameworks featuring coordinatively unsaturated metal sites that can selectively bind O2 over N2 via electron transfer. However, most of these materials exhibit appreciable and/or reversible O2 uptake only at low temperatures, and their open metal sites are also potential strong binding sites for the water present in air. Here, we study the framework CuI-MFU-4l (CuxZn5-xCl4-x(btdd)3; H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which binds O2 reversibly at ambient temperature. We develop an optimized synthesis for the material to access a high density of trigonal pyramidal CuI sites, and we show that this material reversibly captures O2 from air at 25 °C, even in the presence of water. When exposed to air up to 100% relative humidity, CuI-MFU-4l retains a constant O2 capacity over the course of repeated cycling under dynamic breakthrough conditions. While this material simultaneously adsorbs N2, differences in O2 and N2 desorption kinetics allow for the isolation of high-purity O2 (>99%) under relatively mild regeneration conditions. Spectroscopic, magnetic, and computational analyses reveal that O2 binds to the copper(I) sites to form copper(II)-superoxide moieties that exhibit temperature-dependent side-on and end-on binding modes. Overall, these results suggest that CuI-MFU-4l is a promising material for the separation of O2 from ambient air, even without dehumidification.

12.
Science ; 382(6670): 547-553, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917685

RESUMEN

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kß x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.

13.
Chem Mater ; 35(16): 6220-6226, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37637009

RESUMEN

The ability to control thermal transport is critical for the design of thermal rectifiers, logic gates, and transistors, although it remains a challenge to design materials that exhibit large changes in thermal conductivity with switching ratios suitable for practical applications. Here, we propose the use of flexible metal-organic frameworks, which can undergo significant structural changes in response to various stimuli, to achieve tunable switchable thermal conductivity. In particular, we use molecular dynamics simulations to show that the thermal conductivity of the flexible framework Fe(bdp) (bdp2- = 1,4-benzenedipyrazolate) becomes highly anisotropic upon transitioning from the expanded to the collapsed phase, with the conductivity decreasing by nearly an order of magnitude along the direction of compression. Our results add to a small but growing number of studies investigating metal-organic frameworks for thermal transport.

14.
J Am Chem Soc ; 145(31): 17151-17163, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493594

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.

15.
Nat Chem ; 15(11): 1599-1606, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37400595

RESUMEN

The use of coordination complexes within covalent organic frameworks can significantly diversify the structures and properties of this class of materials. Here we combined coordination chemistry and reticular chemistry by preparing frameworks that consist of a ditopic (p-phenylenediamine) and mixed tritopic moieties-an organic ligand and a scandium coordination complex of similar sizes and geometries, both bearing terminal phenylamine groups. Changing the ratio of organic ligand to scandium complex enabled the preparation of a series of crystalline covalent organic frameworks with tunable levels of scandium incorporation. Removal of scandium from the material with the highest metal content subsequently resulted in a 'metal-imprinted' covalent organic framework that exhibits a high affinity and capacity for Sc3+ ions in acidic environments and in the presence of competing metal ions. In particular, the selectivity of this framework for Sc3+ over common impurity ions such as La3+ and Fe3+ surpasses that of existing scandium adsorbents.

17.
Nat Commun ; 14(1): 2386, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185270

RESUMEN

Defects in metal-organic frameworks (MOFs) have great impact on their nano-scale structure and physiochemical properties. However, isolated defects are easily concealed when the frameworks are interrogated by typical characterization methods. In this work, we unveil the presence of solvent-derived formate defects in MOF-74, an important class of MOFs with open metal sites. With multi-dimensional solid-state nuclear magnetic resonance (NMR) investigations, we uncover the ligand substitution role of formate and its chemical origin from decomposed N,N-dimethylformamide (DMF) solvent. The placement and coordination structure of formate defects are determined by 13C NMR and density functional theory (DFT) calculations. The extra metal-oxygen bonds with formates partially eliminate open metal sites and lead to a quantitative decrease of N2 and CO2 adsorption with respect to the defect concentration. In-situ NMR analysis and molecular simulations of CO2 dynamics elaborate the adsorption mechanisms in defective MOF-74. Our study establishes comprehensive strategies to search, elucidate and manipulate defects in MOFs.

18.
ACS Cent Sci ; 9(4): 777-786, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122461

RESUMEN

Materials that simultaneously exhibit permanent porosity and high-temperature magnetic order could lead to advances in fundamental physics and numerous emerging technologies. Herein, we show that the archetypal molecule-based magnet and magnonic material V(TCNE)2 (TCNE = tetracyanoethylene) can be desolvated to generate a room-temperature microporous magnet. The solution-phase reaction of V(CO)6 with TCNE yields V(TCNE)2·0.95CH2Cl2, for which a characteristic temperature of T* = 646 K is estimated from a Bloch fit to variable-temperature magnetization data. Removal of the solvent under reduced pressure affords the activated compound V(TCNE)2, which exhibits a T* value of 590 K and permanent microporosity (Langmuir surface area of 850 m2/g). The porous structure of V(TCNE)2 is accessible to the small gas molecules H2, N2, O2, CO2, ethane, and ethylene. While V(TCNE)2 exhibits thermally activated electron transfer with O2, all the other studied gases engage in physisorption. The T* value of V(TCNE)2 is slightly modulated upon adsorption of H2 (T* = 583 K) or CO2 (T* = 596 K), while it decreases more significantly upon ethylene insertion (T* = 459 K). These results provide an initial demonstration of microporosity in a room-temperature magnet and highlight the possibility of further incorporation of small-molecule guests, potentially even molecular qubits, toward future applications.

19.
J Am Chem Soc ; 145(19): 10730-10742, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37133919

RESUMEN

The reduction of a bimetallic yttrium ansa-metallocene hydride was examined to explore the possible formation of Y-Y bonds with 4d1 Y(II) ions. The precursor [CpAnY(µ-H)(THF)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2) was synthesized by hydrogenolysis of the allyl complex CpAnY(η3-C3H5)(THF), which was prepared from (C3H5)MgCl and [CpAnY(µ-Cl)]2. Treatment of [CpAnY(µ-H)(THF)]2 with excess KC8 in the presence of one equivalent of 2.2.2-cryptand (crypt) generates an intensely colored red-brown product crystallographically identified as [K(crypt)][(µ-CpAn)Y(µ-H)]2. The two rings of each CpAn ligand in the reduced anion [(µ-CpAn)Y(µ-H)]21- are attached to two yttrium centers in a "flyover" configuration. The 3.3992(6) and 3.4022(7) Å Y···Y distances between the equivalent metal centers within two crystallographically independent complexes are the shortest Y···Y distances observed to date. Ultraviolet-visible (UV-visible)/near infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy support the presence of Y(II), and theoretical analysis describes the singly occupied molecular orbital (SOMO) as an Y-Y bonding orbital composed of metal 4d orbitals mixed with metallocene ligand orbitals. A dysprosium analogue, [K(18-crown-6)(THF)2][(µ-CpAn)Dy(µ-H)]2, was also synthesized, crystallographically characterized, and studied by variable temperature magnetic susceptibility. The magnetic data are best modeled with the presence of one 4f9 Dy(III) center and one 4f9(5dz2)1 Dy(II) center with no coupling between them. CASSCF calculations are consistent with magnetic measurements supporting the absence of coupling between the Dy centers.

20.
J Am Chem Soc ; 145(16): 8996-9002, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068040

RESUMEN

The recent discovery of metal-metal bonding and valence delocalization in the dilanthanide complexes (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Y, Gd, Tb, Dy) opened up the prospect of harnessing the 4fn5dz21 electron configurations of non-traditional divalent lanthanide ions to access molecules with novel bonding motifs and magnetism. Here, we report the trinuclear mixed-valence clusters (CpiPr5)3Ln3H3I2 (1-Ln, Ln = Y, Gd), which were synthesized via potassium graphite reduction of the trivalent clusters (CpiPr5)3Ln3H3I3. Structural, computational, and spectroscopic analyses support valence delocalization in 1-Ln resulting from a three-center, one-electron σ bond formed from the 4dz2 and 5dz2 orbitals on Y and Gd, respectively. Dc magnetic susceptibility data obtained for 1-Gd reveal that valence delocalization engenders strong parallel alignment of the σ-bonding electron and the 4f electrons of each gadolinium center to afford a high-spin ground state of S = 11. Notably, this represents the first clear instance of metal-metal bonding in a molecular trilanthanide complex, and the large spin-spin exchange constant of J = 168(1) cm-1 determined for 1-Gd is only the second largest coupling constant characterized to date for a molecular lanthanide compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA