Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Magn Reson ; 365: 107742, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39116460

RESUMEN

The dielectric properties of materials play a crucial role in the propagation and absorption of microwave beams employed in Magic Angle Spinning - Dynamic Nuclear Polarization (MAS-DNP) NMR experiments. Despite ongoing optimization efforts in sample preparation, routine MAS-DNP NMR applications often fall short of theoretical sensitivity limits. Offering a different perspective, we report the refractive indices and extinction coefficients of diverse materials used in MAS-DNP NMR experiments, spanning a frequency range from 70 to 960 GHz. Knowledge of their dielectric properties enables the accurate simulation of electron nutation frequencies, thereby guiding the design of more efficient hardware and sample preparation of biological or material samples. This is illustrated experimentally for four different rotor materials (sapphire, yttria-stabilized zirconia (YSZ), aluminum nitride (AlN), and SiAlON ceramics) used for DNP at 395 GHz/1H 600 MHz. Finally, electromagnetic simulations and state-of-the-art MAS-DNP numerical simulations provide a rational explanation for the observed magnetic field dependence of the enhancement when using nitroxide biradicals, offering insights that will improve MAS-DNP NMR at high magnetic fields.

2.
Biomol NMR Assign ; 18(2): 147-152, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38904726

RESUMEN

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain.


Asunto(s)
Proteínas de la Cápside , Resonancia Magnética Nuclear Biomolecular , Parvovirus B19 Humano , Dominios Proteicos , Parvovirus B19 Humano/química , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Humanos , Secuencia de Aminoácidos
3.
Res Sq ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38883784

RESUMEN

Parvovirus B19 (B19V) is a human pathogen that is the causative agent of several diseases in infants and adults. Due to a lack of antivirals against this virus, treatment options are limited. The minor capsid protein of B19V has a unique N terminus, named VP1u, which is essential for infection. The VP1u encodes a receptor binding domain (RBD), necessary for host cell entry, and a phospholipase A2 (PLA2) domain, crucial for endosomal escape during cellular trafficking. Both domains are indispensable for infection, making the RBD a plausible drug target for inhibitors against B19V, as it is located on the exterior surface of the virus. To date, no experimental structural information has been available for the VP1u component for any Parvovirus. Here we report the backbone NMR resonance assignments for the RBD of B19V and demonstrate it forms a stable structure. The backbone chemical shifts are in good agreement with a structure predicted by AlphaFold, validating that the RBD contains three helices connected by tight turns. This RBD construct can now be used for further NMR studies, including assignment of full-length VP1u, determination of protein-protein interaction interfaces, and development of B19 antivirals specific to the RBD domain. Database: BMRB submission code: 52440.

4.
Biomol NMR Assign ; 17(2): 293-299, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864759

RESUMEN

Adhesin P1 (aka AgI/II) plays a pivotal role in mediating Streptococcus mutans attachment in the oral cavity, as well as in regulating biofilm development and maturation. P1's naturally occurring truncation product, Antigen II (AgII), adopts both soluble, monomeric and insoluble, amyloidogenic forms within the bacterial life cycle. Monomers are involved in important quaternary interactions that promote cell adhesion and the functional amyloid form promotes detachment of mature biofilms. The heterologous, 51-kD C123 construct comprises most of AgII and was previously characterized by X-ray crystallography. C123 contains three structurally homologous domains, C1, C2, and C3. NMR samples made using the original C123 construct, or its C3 domain, yielded moderately resolved NMR spectra. Using Alphafold, we re-analyzed the P1 sequence to better identify domain boundaries for C123, and in particular the C3 domain. We then generated a more tractable construct for NMR studies of the monomeric form, including quaternary interactions with other proteins. The addition of seven amino acids at the C-terminus greatly improved the spectral dispersion for C3 relative to the prior construct. Here we report the backbone NMR resonance assignments for the new construct and characterize some of its quaternary interactions. These data are in good agreement with the structure predicted by Alphafold, which contains additional ß-sheet secondary structure compared to the C3 domain in the C123 crystal structure for a construct lacking the seven C-terminal amino acids. Its quaternary interactions with known protein partners are in good agreement with prior competitive binding assays. This construct can be used for further NMR studies, including protein-protein interaction studies and assessing the impact of environmental conditions on C3 structure and dynamics within C123 as it transitions from monomer to amyloid form.


Asunto(s)
Adhesinas Bacterianas , Streptococcus mutans , Streptococcus mutans/química , Streptococcus mutans/metabolismo , Resonancia Magnética Nuclear Biomolecular , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Estructura Secundaria de Proteína , Amiloide/química , Aminoácidos
5.
Microbiol Spectr ; 10(4): e0166122, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35950854

RESUMEN

The number of bacterial species recognized to utilize purposeful amyloid aggregation within biofilms continues to grow. The oral pathogen Streptococcus mutans produces several amyloidogenic proteins, including adhesins P1 (also known as AgI/II, PAc) and WapA, whose truncation products, namely, AgII and AgA, respectively, represent the amyloidogenic moieties. Amyloids demonstrate common biophysical properties, including recognition by Thioflavin T (ThT) and Congo red (CR) dyes that bind to the cross ß-sheet quaternary structure of amyloid aggregates. Previously, we observed amyloid formation to occur only after 60 h or more of S. mutans biofilm growth. Here, we extend those findings to investigate where amyloid is detected within 1- and 5-day-old biofilms, including within tightly adherent compared with those in nonadherent fractions. CR birefringence and ThT uptake demonstrated amyloid within nonadherent material removed from 5-day-old cultures but not within 1-day-old or adherent samples. These experiments were done in conjunction with confocal microscopy and immunofluorescence staining with AgII- and AgA-reactive antibodies, including monoclonal reagents shown to discriminate between monomeric protein and amyloid aggregates. These results also localized amyloid primarily to the nonadherent fraction of biofilms. Lastly, we show that the C-terminal region of P1 loses adhesive function following amyloidogenesis and is no longer able to competitively inhibit binding of S. mutans to its physiologic substrate, salivary agglutinin. Taken together, our results provide new evidence that amyloid aggregation negatively impacts the functional activity of a widely studied S. mutans adhesin and are consistent with a model in which amyloidogenesis of adhesive proteins facilitates the detachment of aging biofilms. IMPORTANCE Streptococcus mutans is a keystone pathogen and causative agent of human dental caries, commonly known as tooth decay, the most prevalent infectious disease in the world. Like many pathogens, S. mutans causes disease in biofilms, which for dental decay begins with bacterial attachment to the salivary pellicle coating the tooth surface. Some strains of S. mutans are also associated with bacterial endocarditis. Amyloid aggregation was initially thought to represent only a consequence of protein mal-folding, but now, many microorganisms are known to produce functional amyloids with biofilm environments. In this study, we learned that amyloid formation diminishes the activity of a known S. mutans adhesin and that amyloid is found within the nonadherent fraction of older biofilms. This finding suggests that the transition from adhesin monomer to amyloid facilitates biofilm detachment. Knowing where and when S. mutans produces amyloid will help in developing therapeutic strategies to control tooth decay and other biofilm-related diseases.


Asunto(s)
Caries Dental , Streptococcus mutans , Adhesinas Bacterianas/metabolismo , Envejecimiento , Amiloide/química , Proteínas Amiloidogénicas/metabolismo , Biopelículas , Humanos , Streptococcus mutans/metabolismo
6.
Biochim Biophys Acta Biomembr ; 1864(7): 183893, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219719

RESUMEN

We report on the orientation and location of synthetic pulmonary surfactant peptide KL4, (KLLLL)4K, in model lipid membranes. The partitioning depths of selectively deuterated leucine residues within KL4 were determined in DPPC:POPG (4:1) and POPC:POPG (4:1) bilayers by oriented neutron diffraction. These measurements were combined with an NMR-generated model of the peptide structure to determine the orientation and partitioning of the peptide at the lipid-water interface. The results demonstrate KL4 adopting an orientation that interacts with a single membrane leaflet. These observations are consistent with past 2H NMR and EPR studies (Antharam et al., 2009; Turner et al., 2014).


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Fosfatidilgliceroles , Espectroscopía de Resonancia Magnética , Péptidos/química , Fosfatidilgliceroles/química
7.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34996869

RESUMEN

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Asunto(s)
Alanina/análogos & derivados , Dominio Catalítico , Cristalografía por Rayos X/métodos , Espectroscopía de Resonancia Magnética/métodos , Triptófano Sintasa/química , Catálisis , Indoles , Imagen por Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular , Fosfato de Piridoxal/metabolismo , Triptófano Sintasa/metabolismo
8.
Biomolecules ; 10(9)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867275

RESUMEN

While atomic scale structural and dynamic information are hallmarks of nuclear magnetic resonance (NMR) methodologies, sensitivity is a fundamental limitation in NMR studies. Fully exploiting NMR capabilities to study membrane proteins is further hampered by their dilution within biological membranes. Recent developments in dynamic nuclear polarization (DNP), which can transfer the relatively high polarization of unpaired electrons to nuclear spins, show promise for overcoming the sensitivity bottleneck and enabling NMR characterization of membrane proteins under native-like conditions. Here we discuss fundamental aspects of DNP-enhanced solid-state NMR spectroscopy, experimental details relevant to the study of lipid assemblies and incorporated proteins, and sensitivity gains which can be realized in biomembrane-based samples. We also present unique insights which can be gained from DNP measurements and prospects for further development of the technique for elucidating structures and orientations of membrane proteins in native lipid environments.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Lípidos de la Membrana/química
9.
Viruses ; 12(6)2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575696

RESUMEN

Adeno-associated viruses (AAVs) are small, non-pathogenic ssDNA viruses being used as therapeutic gene delivery vectors for the treatment of a variety of monogenic diseases. An obstacle to successful gene delivery is inefficient capsid trafficking through the endo/lysosomal pathway. This study aimed to characterize the AAV capsid stability and dynamics associated with this process for a select number of AAV serotypes, AAV1, AAV2, AAV5, and AAV8, at pHs representative of the early and late endosome, and the lysosome (6.0, 5.5, and 4.0, respectively). All AAV serotypes displayed thermal melt temperatures that varied with pH. The stability of AAV1, AAV2, and AAV8 increased in response to acidic conditions and then decreased at pH 4.0. In contrast, AAV5 demonstrated a consistent decrease in thermostability in response to acidification. Negative-stain EM visualization of liposomes in the presence of capsids at pH 5.5 or when heat shocked showed induced remodeling consistent with the externalization of the PLA2 domain of VP1u. These observations provide clues to the AAV capsid dynamics that facilitate successful infection. Finally, transduction assays revealed a pH and temperature dependence with low acidity and temperatures > 4 °C as detrimental factors.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Dependovirus/metabolismo , Lisosomas/metabolismo , Transducción Genética , Animales , Transporte Biológico/fisiología , Línea Celular , Frío , Terapia Genética/métodos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Células Sf9 , Spodoptera
10.
Sci Rep ; 10(1): 5138, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198417

RESUMEN

Streptococcus mutans is an etiologic agent of human dental caries that forms dental plaque biofilms containing functional amyloids. Three amyloidogenic proteins, P1, WapA, and Smu_63c were previously identified. C123 and AgA are naturally occurring amyloid-forming fragments of P1 and WapA, respectively. We determined that four amyloidophilic dyes, ThT, CDy11, BD-oligo, and MK-H4, differentiate C123, AgA, and Smu_63c amyloid from monomers, but non-specific binding to bacterial cells in the absence of amyloid precludes their utility for identifying amyloid in biofilms. Congo red-induced birefringence is a more specific indicator of amyloid formation and differentiates biofilms formed by wild-type S. mutans from a triple ΔP1/WapA/Smu_63c mutant with reduced biofilm forming capabilities. Amyloid accumulation is a late event, appearing in older S. mutans biofilms after 60 hours of growth. Amyloid derived from pure preparations of all three proteins is visualized by electron microscopy as mat-like structures. Typical amyloid fibers become evident following protease digestion to eliminate non-specific aggregates and monomers. Amyloid mats, similar in appearance to those reported in S. mutans biofilm extracellular matrices, are reconstituted by co-incubation of monomers and amyloid fibers. X-ray fiber diffraction of amyloid mats and fibers from all three proteins demonstrate patterns reflective of a cross-ß amyloid structure.


Asunto(s)
Amiloide/química , Caries Dental/microbiología , Placa Dental/química , Streptococcus mutans/metabolismo , Amiloide/biosíntesis , Biopelículas/crecimiento & desarrollo , Matriz Extracelular/química , Matriz Extracelular de Sustancias Poliméricas/química , Humanos , Estructura Terciaria de Proteína/fisiología
11.
Radiology ; 295(1): 171-180, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043950

RESUMEN

Background The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Encéfalo/metabolismo , Comercio , Espectroscopía de Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Estudios Prospectivos , Adulto Joven
12.
FEBS J ; 287(12): 2597-2611, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31782893

RESUMEN

Cell surface-localized P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans mediates sucrose-independent adhesion to tooth surfaces. Previous studies showed that P1's C-terminal segment (C123, AgII) is also liberated as a separate polypeptide, contributes to cellular adhesion, interacts specifically with intact P1 on the cell surface, and forms amyloid fibrils. Identifying how C123 specifically interacts with P1 at the atomic level is essential for understanding related virulence properties of S. mutans. However, with sizes of ~ 51 and ~ 185 kDa, respectively, C123 and full-length P1 are too large to achieve high-resolution data for full structural analysis by NMR. Here, we report on biologically relevant interactions of the individual C3 domain with A3VP1, a polypeptide that represents the apical head of P1 as it is projected on the cell surface. Also evaluated are C3's interaction with C12 and the adhesion-inhibiting monoclonal antibody (MAb) 6-8C. NMR titration experiments with 15 N-enriched C3 demonstrate its specific binding to A3VP1. Based on resolved C3 assignments, two binding sites, proximal and distal, are identified. Complementary NMR titration of A3VP1 with a C3/C12 complex suggests that binding of A3VP1 occurs on the distal C3 binding site, while the proximal site is occupied by C12. The MAb 6-8C binding interface to C3 overlaps with that of A3VP1 at the distal site. Together, these results identify a specific C3-A3VP1 interaction that serves as a foundation for understanding the interaction of C123 with P1 on the bacterial surface and the related biological processes that stem from this interaction. DATABASE: BMRB submission code: 27935.


Asunto(s)
Adhesinas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Streptococcus mutans/química , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica
13.
Solid State Nucl Magn Reson ; 100: 85-91, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31026722

RESUMEN

We investigate solid-state dynamic nuclear polarization of 13C and 15N nuclei using monoradical trityl OX063 as a polarizing agent in a magnetic field of 14.1 T with magic angle spinning at ∼100 K. We monitored the field dependence of direct 13C and 15N polarization for frozen [13C, 15N] urea and achieved maximum absolute enhancement factors of 240 and 470, respectively. The field profiles are consistent with polarization of 15N spins via either the solid effect or the cross effect, and polarization of 13C spins via a combination of cross effect and solid effect. For microcrystalline, 15N-enriched tryptophan synthase sample containing trityl radical, a 1500-fold increase in 15N signal was observed under microwave irradiation. These results show the promise of trityl radicals and their derivatives for direct polarization of low gamma, spin-½ nuclei at high magnetic fields and suggest a novel approach for selectively polarizing specific moieties or for polarizing systems which have low levels of protonation.


Asunto(s)
Espectroscopía de Resonancia Magnética , Compuestos de Tritilo/química , Radicales Libres/química , Campos Magnéticos , Microondas , Protones , Urea/química
14.
Neuroimage ; 191: 537-548, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840905

RESUMEN

Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/normas , Ácido gamma-Aminobutírico/análisis , Adolescente , Adulto , Conjuntos de Datos como Asunto , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Valores de Referencia , Agua , Adulto Joven
15.
Chemphyschem ; 20(2): 216-230, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30536696

RESUMEN

The noninvasive, quantitative ability of nuclear magnetic resonance (NMR) spectroscopy to characterize small molecule metabolites has long been recognized as a major strength of its application in biology. Numerous techniques exist for characterizing metabolism in living, excised, or extracted tissue, with a particular focus on 1 H-based methods due to the high sensitivity and natural abundance of protons. With the increasing use of high magnetic fields, the utility of in vivo 1 H magnetic resonance spectroscopy (MRS) has markedly improved for measuring specific metabolite concentrations in biological tissues. Higher fields, coupled with recent developments in hyperpolarization, also enable techniques for complimenting 1 H measurements with spectroscopy of other nuclei, such as 31 P and 13 C, and for combining measurements of metabolite pools with metabolic flux measurements. We compare ex vivo and in vivo methods for studying metabolism in the brain using NMR and highlight insights gained through using higher magnetic fields, the advent of dissolution dynamic nuclear polarization, and combining in vivo MRS and ex vivo NMR approaches.


Asunto(s)
Encéfalo/metabolismo , Espectroscopía de Protones por Resonancia Magnética/métodos , Animales , Humanos
16.
J Magn Reson ; 289: 35-44, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29459343

RESUMEN

Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes).

17.
Chem Commun (Camb) ; 54(19): 2425-2428, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29457159

RESUMEN

We show increased dynamic nuclear polarization by adding a low dosage of a S = 15/2 Gd based endohedral metallofullerene (EMF) to DNP samples. By adding 60 µM Gd2@C79N, the nuclear polarization of 1H and 13C spins from 40 mM 4-oxo-TEMPO increases by approximately 40% and 50%, respectively, at 5 T and 1.2 K. Electron-electron double resonance (ELDOR) measurements show that the high spin EMF shortens the electron relaxation times and increases electron spectral diffusion leading to the increased DNP enhancement.

18.
J Phys Chem B ; 121(39): 9102-9112, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28872861

RESUMEN

The N-terminal 25 amino-acid residues of pulmonary surfactant protein B (SP-B1-25) induces unusual lipid polymorphisms in a model lipid system, 4:1 DPPC/POPG, mirroring the lipid composition of native pulmonary surfactant. It is widely suggested that SP-B1-25-induced lipid polymorphisms within the alveolar aqueous subphase provide a structural platform for rapid lipid adsorption to the air-water interface. Here, we characterize in detail the phase behavior of DPPC and POPG in hydrated lipid assemblies containing therapeutic levels of SP-B1-25 using 2H and 31P solid state NMR spectroscopy. The appearance of a previously observed isotropic lipid phase is found to be highly dependent on the thermal cycling of the samples. Slow heating of frozen samples leads to phase separation of DPPC into a lamellar phase whereas POPG lipids interact with the peptide to form an isotropic phase at physiologic temperature. Rapid heating of frozen samples to room temperature leads to strongly isotropic phase behavior for both DPPC and POPG lipids, with DPPC in exchange between isotropic and interdigitated phases. 31P T2 relaxation times confirm the isotropic phase to be consistent with a lipid cubic phase. The observed phases exhibit thermal stability up to physiologic temperature (37 °C) and are consistent with the formation of a ripple phase containing a large number of peptide-induced membrane structural defects enabling rapid transit of lipids between lipid lamellae. The coexistance of a lipid cubic phase with interdigitated lipids suggests a specific role for the highly conserved N-terminus of SP-B in stabilizing this unusual lipid polymorphism.


Asunto(s)
Proteína B Asociada a Surfactante Pulmonar/química , 1,2-Dipalmitoilfosfatidilcolina/química , Entropía , Lípidos/química , Modelos Biológicos , Transición de Fase
19.
Microbiology (Reading) ; 163(4): 488-501, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28141493

RESUMEN

Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds.


Asunto(s)
Amiloide/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Streptococcus mutans/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Matriz Extracelular/metabolismo , Streptococcus mutans/crecimiento & desarrollo , Taninos/farmacología
20.
J Phys Chem B ; 120(32): 7880-8, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27434371

RESUMEN

Dynamic nuclear polarization (DNP) enhanced solid-state NMR can provide orders of magnitude in signal enhancement. One of the most important aspects of obtaining efficient DNP enhancements is the optimization of the paramagnetic polarization agents used. To date, the most utilized polarization agents are nitroxide biradicals. However, the efficiency of these polarization agents is diminished when used with samples other than small molecule model compounds. We recently demonstrated the effectiveness of nitroxide labeled lipids as polarization agents for lipids and a membrane embedded peptide. Here, we systematically characterize, via electron paramagnetic (EPR), the dynamics of and the dipolar couplings between nitroxide labeled lipids under conditions relevant to DNP applications. Complemented by DNP enhanced solid-state NMR measurements at 600 MHz/395 GHz, a molecular rationale for the efficiency of nitroxide labeled lipids as DNP polarization agents is developed. Specifically, optimal DNP enhancements are obtained when the nitroxide moiety is attached to the lipid choline headgroup and local nitroxide concentrations yield an average e(-)-e(-) dipolar coupling of 47 MHz. On the basis of these measurements, we propose a framework for development of DNP polarization agents optimal for membrane protein structure determination.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Membrana Dobles de Lípidos/química , Liposomas/química , Lípidos de la Membrana/química , Estructura Molecular , Óxidos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA