RESUMEN
The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.
Asunto(s)
Óxido de Aluminio , Cerámica , Ensayo de Materiales , Óxido de Aluminio/química , Cerámica/química , Propiedades de Superficie , Circonio/química , Diseño Asistido por Computadora , Materiales DentalesRESUMEN
STATEMENT OF PROBLEM: The bonding of implant-supported prostheses is determined by abutment material, convergence angle, height, surface treatment, and luting agents. However, studies evaluating the bonding of luting agents to titanium base abutments with different heights under fatigue conditions are scarce. PURPOSE: The purpose of this in vitro study was to evaluate the retention of zirconia crowns bonded with different luting agents to titanium base abutments of different heights before and after fatigue testing. MATERIAL AND METHODS: Zirconia crowns were designed, milled, and distributed into 4 experimental groups according to the luting agents (G-Multi Primer/G-Cem LinkForce [MP/GC] and Scotchbond Universal/RelyX Ultimate [SU/RU]) and titanium base abutment heights (2.5 mm and 4 mm) (n=10). Pull-out testing was performed in a universal testing machine at a crosshead speed of 1 mm/min until crown displacement. Fatigue testing was performed by an electric precision fatigue simulator (1×106 cycles; 100 N; and 15 Hz), followed by pull-out testing of fatigued specimens. Collected data were statistically evaluated by using a linear mixed model after post hoc comparisons by the least significant difference test (α=.05). RESULTS: Luting agents, abutment heights, and fatigue influenced the bonding retention of zirconia crowns to titanium base abutments. SU/RU agents promoted higher pull-out compared with MP/GC for both abutment heights before and after fatigue. Higher abutment height increased pull-out regarding lower abutment height for SU/RU materials before and after fatigue testing. Although fatigue had no significant effect on the pull-out of MP/GC, lower bond retention was observed for SU/RU after fatigue, regardless of abutment height. CONCLUSIONS: Luting agent composition and the interaction with abutment height and fatigue influenced the retention of zirconia crowns to titanium base abutments.
Asunto(s)
Cementos Dentales , Implantes Dentales , Cementos Dentales/química , Titanio/química , Coronas , Circonio/química , Ensayo de Materiales , Pilares Dentales , Análisis del Estrés DentalRESUMEN
OBJECTIVES: To process an alumina-toughened zirconia (ATZ) nanocomposite and to characterize its crystalline phases, microstructure, residual stress, mechanical and optical properties before and after two different artificial aging methodologies. METHODS: Disc-shaped specimens were obtained through uniaxial pressing of a commercial ATZ powder comprised of 80%ZrO2 / 20%Al2O3, with a particle size of 50 nm and 150 nm, respectively. Sintering was performed at 1500ºC for 2 h. Groups were established according to the aging protocol as immediate (ATZ-I) and aged either in autoclave (ATZ-A) or hydrothermal reactor (ATZ-R) at 134 ºC for 20 h at 2.2 bar. Crystalline phases and microstructure were assessed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Residual stress was evaluated by Raman spectroscopy. Contrast Ratio (CR) and Translucency Parameter (TP) were calculated to characterize optical properties. Mechanical properties were analyzed through Vickers microhardness, fracture toughness, and biaxial flexural strength test. RESULTS: XRD spectra of both aging protocols revealed the presence of monoclinic zirconia (20-31%), where higher phase transformation was observed after aging in hydrothermal reactor. Optical properties evaluation demonstrated high opacity (CR: 0.99) and masking ability (TP: 0.26), with no significant differences after aging. Raman spectroscopy evidenced the presence of residual compressive stresses in the aged groups, being significantly higher for ATZ-R (-215.2 MPa). As-sintered specimens revealed hardness of â¼12.3 GPa and fracture toughness of â¼1.9 MPa.m1/2. Characteristic strength was 740 MPa for ATZ-I, 804 MPa for ATZ-A, and 879 MPa for ATZ-R, with significant differences between groups. Weibull modulus ranged from 16.5 to 18.8. All groups demonstrated high reliability up to 500 MPa stress missions (99-100%), with no significant differences after aging. SIGNIFICANCE: The experimental ATZ nanocomposite presented high opacity and a high Weibull modulus. While aging created internal compressive stress responsible for an increase in characteristic strength, the nanocomposite was susceptible to hydrothermal degradation. Further studies are required to evaluate its degradation kinetics at low temperatures.
RESUMEN
The aim of this study was to evaluate the bone healing of tight-fit implants placed in the maxilla and mandible of subjects compromised with metabolic syndrome (MS) and type-2 Diabetes Mellitus (T2DM). Eighteen Göttingen minipigs were randomly distributed into three groups: (i) control (normal diet), (ii) MS (cafeteria diet for obesity induction), (iii) T2DM (cafeteria diet for obesity induction + Streptozotocin for T2DM induction). Maxillary and mandibular premolars and molar were extracted. After 8 weeks of healing, implants with progressive small buttress threads were placed, and allowed to integrate for 6 weeks after which the implant/bone blocks were retrieved for histological processing. Qualitative and quantitative histomorphometric analyses (percentage of bone-to-implant contact, %BIC, and bone area fraction occupancy within implant threads, %BAFO) were performed. The bone healing process around the implant occurred predominantly through interfacial remodeling with subsequent bone apposition. Data as a function of systemic condition yielded significantly higher %BIC and %BAFO values for healthy and MS relative to T2DM. Data as a function of maxilla and mandible did not yield significant differences for either %BIC and %BAFO. When considering both factors, healthy and MS subjects had %BIC and %BAFO trend towards higher values in the mandible relative to maxilla, whereas T2DM yielded higher %BIC and %BAFO in the maxilla relative to mandible. All systemic conditions presented comparable levels of %BIC and %BAFO in the maxilla; healthy and MS presented significantly higher %BIC and %BAFO relative to T2DM in the mandible. T2DM presented lower amounts of bone formation around implants relative to MS and healthy. Implants placed in the maxilla and in the mandible showed comparable amounts of bone in proximity to implants.
Asunto(s)
Implantes Dentales , Diabetes Mellitus Tipo 2 , Animales , Implantación Dental Endoósea , Diabetes Mellitus Tipo 2/complicaciones , Mandíbula/cirugía , Obesidad , Oseointegración , Prótesis e Implantes , Propiedades de Superficie , Porcinos , Porcinos EnanosRESUMEN
PURPOSE: This study evaluated the probability of survival and failure mode of endodontically treated incisors without ferrule restored with CAD/CAM FRC post-cores. METHODS: Root canals of bovine incisors were treated, leaving post preparations of â¼10 mm. Teeth were allocated into three groups: (i) cast metal post-core, (ii) FRC prefabricated post with a direct resin core build-up, and (iii) CAD/CAM FRC post-core. Posts and zirconia crowns were cemented using resin cement. Specimens were subjected to step-stress accelerated-life fatigue testing in water. Use level probability Weibull curves, probability of survival for a mission of 100,000 cycles at 25, 50, and 100 N, Weibull modulus, and characteristic strength were calculated and plotted. Failure mode was examined under a stereomicroscope. RESULTS: Restored incisors demonstrated high probability of survival (93-100%) for missions estimated at 25 and 50 N, irrespective of post-core foundation. At 100 N, incisors restored with metal posts presented significantly higher probability of survival (99%) relative to CAD/CAM posts (79%), whereas FRC groups demonstrated no significant difference. Weibull analysis indicated no significant difference on the Weibull modulus (m = 3.38-5.92). Incisors reconstructed with metal post-cores (431 N) presented significantly higher characteristic strength relative to prefabricated (200 N) and CAD/CAM (202 N) FRC post-cores. While post fracture was the chief failure mode for prefabricated and CAD/CAM FRC post-cores, post and/or root fracture were the main event for metal post-cores. CONCLUSION: Endodontically treated incisors without ferrule restored with CAD/CAM FRC post-cores presented promising probability of survival for loads compatible with anterior masticatory forces and favorable failure modes.
Asunto(s)
Técnica de Perno Muñón , Fracturas de los Dientes , Animales , Bovinos , Incisivo , Coronas , Diseño Asistido por Computadora , Cementos de Resina , Resinas Compuestas , Análisis del Estrés Dental , Fracaso de la Restauración DentalRESUMEN
To evaluate the effect of fatigue and aging on the crystalline content and reliability of a zirconia-toughened-alumina (ZTA) composite compared to its individual counterpart materials (3Y-TZP and Al2O3). Thirty-six disc-shaped specimens per group were obtained to comply with ISO 6872:2015. Crystalline content, microstructure and reliability of experimental groups were evaluated in four stages: 1) immediate; 2) aged; 3) fatigued; 4) aged + fatigue. Aging was performed in autoclave and Step-Stress-Accelerated-Life-Testing (SSALT) was performed using three stress profiles. Weibull statistics were used to determine Weibull parameters and life-expectancy. A significant increase in monoclinic phase in 3Y-TZP was observed after aging (19.31%), fatigue (17.88%) and aging + fatigue (55.81%), while ZTA evidenced minimal variation among all conditions (<5.69%). 3Y-TZP presented higher reliability than ZTA at 300 and 500 MPa, and ZTA outperformed Al2O3 at the same stress missions. None of the ceramics yielded acceptable reliability at 800 MPa. A higher characteristic strength was observed for 3Y-TZP, followed by ZTA and Al2O3. While after aging ZTA and Al2O3 remained stable, 3Y-TZP exhibited a significant increase in the characteristic stress. Aging did not affect the reliability of ZTA and Al2O3. 3Y-TZP demonstrated an increase in monoclinic content and characteristic strength after aging.
Asunto(s)
Óxido de Aluminio , Itrio , Anciano , Óxido de Aluminio/química , Cerámica/química , Materiales Dentales , Humanos , Ensayo de Materiales , Reproducibilidad de los Resultados , Propiedades de Superficie , Itrio/química , Circonio/químicaRESUMEN
PURPOSE: To evaluate the effect of composition, fabrication mode, and thermal cycling on the mechanical properties of different polymeric systems used for temporary dental prostheses. MATERIALS AND METHODS: Standard bar-shaped specimens (25 × 2 × 2 mm) were fabricated of six polymeric systems of varying compositions and fabrication modes (n = 10/group): conventional PMMA (Alike, GC) - group CGC; conventional PMMA (Dêncor, Clássico) - group CD; bis-acryl (Tempsmart, GC) - group BGC; bis-acryl (Yprov, Yller) - group BY; milled PMMA (TelioCAD, Ivoclar) - group MI; 3D printed bis-acryl - (Cosmos Temp, Yller) group PY. Half of the specimens were subjected to 5000 thermal cycles (5 °C to 55 °C). Three-point bending tests were performed using a universal testing machine with a crosshead speed set to 0.5 mm/min. Flexural strength and elastic modulus were calculated from the collected data. FTIR spectra were recorded pre and post curing and after thermal cycling to evaluate material composition and degree of conversion. Energy-dispersive spectroscopy (EDS) and scanning electron microscope (SEM) were utilized to examine the composition and micromorphology of the systems, respectively. Data were analyzed using two-analysis of variance and Tukey tests (α = 0.05). RESULTS: FTIR spectra indicated that BGC, BY and PY groups corresponded to urethane dimethacrylate systems (bis-acryl), while CGC, CD, and MI groups corresponded to monomethacrylate systems, polymethyl methacrylate (PMMA). Bis-acryl BGC system yeilded the highest flexural strength (80 MPa), followed by the milled PMMA MI system (71 MPa), both statistically significant different relative to other groups. Bis-acryl BY exhibited the lowest flexural strength (27 MPa). Thermocycling significantly increased the flexural strength of all polymeric systems (â¼10-15 MPa), except for the 3D-printed PY group. Bis-acryl BGC (1.89 GPa) and conventional PMMA CGC (1.66 GPa) groups exhibited the highest elastic modulus, followed by milled PMMA MI group (1.51 GPa) and conventional PMMA CD (1.45 GPa) systems, with significant difference detected between BGC group and MI and CD groups. The 3D printed PY (0.78 GPa) and bis-acryl BY (0.47 GPa) systems presented the lowest elastic modulus. Thermocycling did not have a significant influence on the elastic modulus. FTIR spectra indicate water sorption and release of unreacted monomers as well as increased degree of conversion (â¼5-12%) after thermal cycling. CONCLUSION: Composition and fabrication mode and thermal cycling significantly affected the mechanical properties of polymeric systems used for temporary dental prostheses.
Asunto(s)
Resinas Compuestas , Polimetil Metacrilato , Resinas Compuestas/química , Materiales Dentales , Ensayo de Materiales , Polimetil Metacrilato/química , Prostodoncia , Propiedades de SuperficieRESUMEN
OBJECTIVES: To evaluate the effect of the ceramic processing and aging method on the microstructure, optical, and mechanical properties of a third generation ultra-translucent zirconia, yttria partially stabilized zirconia (5Y-PSZ). METHODS: In-house discs were obtained through uniaxial and isostatic pressing an ultra-translucent Y-PSZ powder and sintering at 1450 °C for 2 h. As control, a commercial disc was milled from pre-sintered blocks fabricated with the same 5Y-PSZ powder through isostatic pressing and sintered under the same protocol. Discs were allocated into three groups according to aging condition as immediate (non-aged) and aged using autoclave or hydrothermal reactor at 134ºC for 20 h at 2.2 bar. Crystalline content and microstructure were evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Optical properties were determined using reflectance data to calculate the contrast ratio (CR) and translucency parameter (TP). Mechanical properties were assessed by Vickers hardness, fracture toughness and biaxial flexural strength tests. RESULTS: XRD spectra revealed a prevalence of cubic (70%) and tetragonal (30%) phases, and the SEM images showed a dense fully crystalline ceramic matrix for both materials. Crystalline content and microstructure of the in-house and commercial 5Y-PSZs were not affected by aging. As-sintered 5Y-PSZs demonstrated similar CR (~0.6) and TP (~18) values, as well as Vickers hardness (~14 GPa) and fracture toughness (~3.8 Mpa.m1/2), with no significant alteration after both aging methods. In-house and commercial Y-PSZs Weibull moduli ranged from 3.0 to 5.3. 5Y-PSZ processing methods resulted in similar characteristic strength after sintering (592-618 Mpa). While commercial 5Y-PSZ showed no significant influence of aging on strength, hydrothermal reactor aging significantly decreased the in-house Y-PSZ characteristic strength (474 Mpa). Both 5Y-PSZs demonstrated high reliability up to 300-Mpa strength missions, with no detrimental effect of aging (88-100%). SIGNIFICANCE: Irrespective of the processing method, ultra-translucent 5Y-PSZ showed high aging resistance and translucency stability, as well as strength corresponding to the indication up to short-span anterior prostheses.
Asunto(s)
Materiales Dentales , Circonio , Cerámica , Ensayo de Materiales , Polvos , Reproducibilidad de los Resultados , Propiedades de Superficie , ItrioRESUMEN
OBJECTIVE: To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. METHODS: Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed. RESULTS: Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location. SIGNIFICANCE: Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.
Asunto(s)
Implantes Dentales , Fracaso de la Restauración Dental , Cerámica , Coronas , Porcelana Dental , Prótesis Dental de Soporte Implantado , Análisis del Estrés Dental , Humanos , Ensayo de Materiales , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVE: Evaluate the effect of aging using two different methods on the three-dimensional fit of zirconia abutments at the implant-abutment connection and estimate the probability of survival of anterior crowns supported by straight and 17-degree angled abutments. MATERIALS AND METHODS: Two different zirconia abutment designs, straight and 17-degree angled abutments (n = 63/group), were evaluated in the current study. The abutments were randomly allocated into three experimental groups according to laboratory aging condition (134°C, 2.2 bar, 20 h): (i) control, (ii) autoclave aging, and (iii) hydrothermal reactor aging. Crystalline content was determined by X-Ray diffraction (XRD) and Raman spectroscopy, and microstructure was analyzed using field-emission gun scanning electron microscope (FEG-SEM). Implant-abutment volume misfit was determined in the straight abutments by micro-computed tomography using the silicone replica technique. For fatigue testing, abutments were torqued to the implants and connected to standardized maxillary incisor zirconia crowns. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water until fracture or suspension. The use level probability Weibull curves and probability of survival for a mission of 50,000 cycles at 50, 100, 150 and 200 N were calculated and plotted. Fractured samples were analyzed using a stereomicroscope and scanning electron microscope. RESULTS: The crystalline spectra depicted a zirconia system primarily composed of the tetragonal phase. Laboratory aging yielded a 20%- and 37%-increase in the monoclinic content for abutments aged in autoclave and hydrothermal reactor relative to control, respectively. A fully crystalline matrix with a regular grain size was observed in the FEG-SEM for control abutments, with a considerable presence of intergranular defects. While autoclave aging triggered no significant alteration to the microstructure, defect population was reduced after hydrothermal reactor aging. Control abutments presented a significantly higher volume misfit (2.128 ± 0.54 mm3) relative to aged abutments using autoclave (1.244 ± 0.48 mm3) or hydrothermal reactor (1.441 ± 0.41 mm3). The beta (ß) values indicated that failures were predominantly controlled by material strength rather than fatigue damage accumulation for all groups, except for straight control abutments. Irrespective of aging, the probability of survival of straight and angled zirconia abutments was up to 95% (95-100%) at 50 and 100 N. A 50N-increase in the load resulted in wider range of survival estimate, with straight autoclave abutments percentage significantly lower probability of survival (77%) than angled hydrothermal reactor abutments (99%). At 200N, angled hydrothermal reactor (97%) or autoclave (82%) aged abutments demonstrated the highest probability of survival, angled control (71%) and straight hydrothermal reactor (69%) abutments intermediate values, and straight autoclave (23%) and control (7%) abutments the lowest estimate. The failure mode predominantly involved abutment and/or abutment screw fracture for both straight and angled abutments. CONCLUSIONS: Hydrothermal aging significantly influenced volume misfit, as well as the probability of survival of zirconia abutments at higher loads for both angled and straight abutments.
Asunto(s)
Prótesis e Implantes , Circonio , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Ensayo de Materiales , Microtomografía por Rayos XRESUMEN
OBJECTIVES: To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs). METHODS: For FRC characterization, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier-transformed infrared spectrometry, simultaneous thermogravimetric analysis and differential scanning calorimetry were performed. For fatigue testing, 3-unit FRC frameworks were fabricated with conventional (9 mm2 connector area) and modified designs (12 mm2 connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM. RESULTS: The FRC consisted of an epoxy resin (â¼25%) matrix reinforced with inorganic particles and glass fibers (â¼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads. SIGNIFICANCE: Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.
Asunto(s)
Implantes Dentales , Prótesis Dental de Soporte Implantado , Resinas Compuestas , Diseño Asistido por Computadora , Materiales Dentales , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Ensayo de Materiales , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVE: To evaluate the fatigue survival, failure mode, and maximum principal stress (MP Stress) and strain (MP Strain) of resin-matrix ceramic systems used for implant-supported crowns. METHODS: Identical molar crowns were milled using four resin-matrix ceramics (n = 21/material): (i) Shofu Hard, (ii) Cerasmart (iii) Enamic, and (iv) Shofu HC. Crowns were cemented on the abutments, and the assembly underwent step-stress accelerated-life testing. Use level probability Weibull curves at 300 N were plotted and the reliability at 300, 500 and 800 N was calculated for a mission of 50,000 cycles. Fractographic analysis was performed using stereomicroscope and scanning electron microscope. MP Stress and MP Strain were determined by finite element analysis. RESULTS: While fatigue dictated failures for Cerasmart (ß > 1), material strength controlled Shofu Hard, Enamic, and Shofu HC failures (ß < 1). Shofu HC presented lower reliability at 300 N (79%) and 500 N (59%) than other systems (>90%), statistically different at 500 N. Enamic (57%) exhibited a significant reduction in the probability of survival at 800 N, significantly lower than Shofu Hard and Cerasmart; however, higher than Shofu HC (12%). Shofu Hard and Cerasmart (>93%) demonstrated no significant difference for any calculated mission (300-800 N). Failure mode predominantly involved resin-matrix ceramic fracture originated from occlusal cracks, corroborating with the MP Stress and Strain location, propagating through the proximal and cervical margins. SIGNIFICANCE: All resin-matrix ceramics crowns demonstrated high probability of survival in a physiological molar load, whereas Shofu Hard and Cerasmart outperformed Enamic and Shofu HC at higher loads. Material fracture comprised the main failure mode.
Asunto(s)
Implantes Dentales , Fracaso de la Restauración Dental , Cerámica , Simulación por Computador , Diseño Asistido por Computadora , Coronas , Porcelana Dental , Análisis del Estrés Dental , Ensayo de Materiales , Reproducibilidad de los ResultadosRESUMEN
The reduced hardware design of narrow implants increases the risk of fracture not only of the implant itself but also of the prosthetic constituents. Hence, the current study is aimed at estimating the probability of survival of anterior crowns supported by different narrow implant systems. Three different narrow implant systems of internal conical connections were evaluated (Ø3.5 × 10 mm): (i) Active (Nobel Biocare), (ii) Epikut (S.I.N. Implant System), and (iii) BLX (Straumann). Abutments were torqued to the implants, and standardized maxillary incisor crowns were cemented. The assemblies were subjected to step-stress accelerated life testing (SSALT) in water through load application of 30 degrees off-axis lingually at the incisal edge of the crowns using a flat tungsten carbide indenter until fracture or suspension. The use level probability Weibull curves and reliability for completion of a mission of 100,000 cycles at 80 N and 120 N were calculated and plotted. Weibull modulus and characteristic strength were also calculated and plotted. Fractured samples were analyzed in a stereomicroscope. The beta (ß) values were 1.6 (0.9-3.1) and 1.4 (0.9-2.2) for BLX and Active implants, respectively, and 0.5 (0.3-0.8) for the Epikut implant, indicating that failures were mainly associated with fatigue damage accumulation in the formers, but more likely associated with material strength in the latter. All narrow implant systems showed high probability of survival (≥95%, CI: 85-100%) at 80 and 120 N, without significant difference between them. Weibull modulus ranged from 6 to 14. The characteristic strength of Active, Epikut, and BLX was 271 (260-282) N, 216 (205-228) N, and 275 (264-285) N, respectively. The failure mode predominantly involved abutment and/or abutment screw fracture, whereas no narrow implant was fractured. Therefore, all narrow implant systems exhibited a high probability of survival for anterior physiologic masticatory forces, and failures were restricted to abutment and abutment screw.
Asunto(s)
Diseño de Implante Dental-Pilar/métodos , Coronas , Pilares Dentales , Fracaso de la Restauración Dental , Análisis del Estrés Dental/métodos , Humanos , Incisivo/química , Ensayo de Materiales/métodos , Maxilar/química , Microscopía Electrónica de Rastreo/métodos , Probabilidad , Prótesis e Implantes , Reproducibilidad de los Resultados , Estrés Mecánico , Propiedades de Superficie , Torque , Agua/químicaRESUMEN
OBJECTIVES: To characterize the optical and mechanical properties of a commercial and in-house translucent Y-TZP before and after aging in autoclave or hydrothermal reactor. METHODS: In-house experimental discs were obtained through uniaxial and isostatic pressing a translucent Y-TZP powder and sintering at 1,550 °C/1 h. Commercial discs were milled from pre-sintered blocks fabricated with the same powder through uniaxial and isostatic pressing and sintering. Discs were allocated into three groups according to aging condition: immediate, aged via autoclave, or reactor (134 °C, 20 h, 2.2 bar). Crystalline content and microstructure were evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Residual compressive stress (CS) was determined by Raman spectroscopy. Optical properties were determined by the contrast ratio (CR) and translucency parameter (TP) using reflectance data. Mechanical properties were assessed by Vickers hardness, fracture toughness and biaxial flexural strength tests. RESULTS: XRD and SEM revealed a typical Y-TZP crystalline content, chiefly tetragonal phase, and a dense crystalline matrix for both processing protocols. Reactor aging triggered a more pronounced t-m transformation relative to autoclave. In-house and commercial Y-TZPs demonstrated similar CR and TP, with reactor aging significantly increasing their translucency. Similarly, reactor aging influenced Vickers hardness and fracture toughness. In-house processed Y-TZP clearly demonstrated the presence of CS, whereas commercial Y-TZP showed no presence of CS. Non-aged in-house Y-TZP resulted in significantly lower characteristic strength relative to commercial Y-TZP. While aging protocols significantly increased the characteristic strength of in-house Y-TZP, reactor significantly decreased commercial Y-TZP characteristic strength. Both Y-TZP processing protocols demonstrated high reliability at high-stress missions, with no detrimental effect of aging. CONCLUSIONS: Laboratory aging methodology significantly influenced optical and mechanical properties of a commercial and in-house translucent Y-TZP.
Asunto(s)
Cerámica , Itrio , Materiales Dentales , Ensayo de Materiales , Reproducibilidad de los Resultados , Propiedades de Superficie , CirconioRESUMEN
OBJECTIVES: To evaluate the three-dimensional fit of abutments fabricated by the industry to those either milled or cast by a commercial laboratory and to correlate the implant-abutment connection fit with stress at fatigue failure of prostheses. Probability of survival (reliability) and fractography to characterize failure modes were also performed for cemented and screw-retained prostheses. METHODS: One-hundred and twenty-six maxillary central incisor crowns were milled to restore implants and divided in 3 cemented and 3 screwed-retained groups (nâ¯=â¯21/each), as follows: [Digital-Sc]: milled one-piece monolithic abutment/crown; [TiB-Sc]: milled crowns cemented onto Ti-base abutments; [UCLA]: screw-retained crown using UCLA abutments; [Digital-Ce]: milled two-piece assembly comprised by screwed monolithic abutment and a cemented crown; [TiB-Ce]: milled coping cemented onto Ti-base abutments to receive a cemented crown; [UCLA-Ce]: UCLA abutments that received an overcast coping and a cemented crown. Implant-abutment volume misfit was assessed by micro-computed tomography using the silicone replica technique. Implant/crown systems were subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves and reliability for a mission of 50,000 cycles at calculated stress at failure of 2,300, 3300 and 4300â¯MPa were plotted. Fractographic analysis was performed with scanning electron microscopy. Internal misfit was analyzed through one-way ANOVA following post-hoc comparisons by Tukey test (pâ¯<â¯0.05). Correlation between misfit volume and the stress at fatigue failure was assessed by Pearson test. RESULTS: Similar misfit volumes were observed for TiB-Sc (0.458â¯mm3), TiB-Ce (0.461â¯mm3), UCLA (0.471â¯mm3) and UCLA-Ce (0.480â¯mm3), which were significantly lower than Digital-Sc (0.676â¯mm3) and Digital-Ce (0.633â¯mm3). The mean ß values were: 1.68, 1.39, 1.48, 2.41, 2.27 and 0.71 for Digital-Sc, TiB-Sc, UCLA, Digital-Ce, TiB-Ce and UCLA-Ce, respectively, indicating that fatigue was an accelerating factor for failure of all groups. Higher stress at failure decreased the reliability of all groups, more significantly for screw compared to cement-retained groups, especially for Digital-Sc that demonstrated the lowest reliability. The failure mode was restricted to abutment screw fracture. A negative correlation was observed between misfit values and stress at failure (râ¯=â¯-0.302, pâ¯=â¯0.01). CONCLUSIONS: Abutments milled by a commercial lab presented higher misfit compared to those provided by the industry and a moderate correlation was observed between higher misfit and lower stress at failure during fatigue. Probability of survival decreased at higher stress, especially for screw compared to cement-retained groups, and failures were confined to abutment screws.
Asunto(s)
Coronas , Incisivo , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Prótesis e Implantes , Reproducibilidad de los Resultados , Microtomografía por Rayos XRESUMEN
OBJECTIVE: To evaluate the reliability and failure mode of zirconia-reinforced lithium silicate (ZLS) molar crowns of different thicknesses. METHODS: Monolithic ZLS molar crowns (0.5mm, 1.0mm, and 1.5 mm thickness) were modeled and milled using a CAD/CAM system (n = 21/group). Crowns were cemented on dentin-like epoxy resin replicas with a resin cement. The specimens were subjected to single load-to-failure test for step-stress profiles designing. Mouth-motion step-stress accelerated-life test was performed under water by sliding an indenter 0.7 mm lingually down on the distobuccal cusp until specimen fracture or suspension. Use level probability Weibull curves and reliability were calculated and plotted. Polarized-light optical microscope and scanning electron microscope (SEM) were used to characterize fracture patterns. RESULTS: Irrespective of crown thickness, beta (ß) values were higher than 1 and fatigue accelerated failures. While 0.5 mm ZLS crowns exhibited a significant reduction in the probability of survival at 200N, 300N and 400 N mission loads (69%, 41% and 19%, respectively), no significant difference was observed between 1.0 mm and 1.5 mm crowns. Both thicknesses have maintained the survivability at approximately 90%. Failure primarily comprised bulk fracture where radial cracks originated from the cementation surface beneath the indenter loading trail and propagated towards the cervical margin. SIGNIFICANCE: 1.5 mm- and 1.0 mm-thickness monolithic ZLS crowns presented higher probability of survival compared to 0.5 mm crowns. Bulk fracture was the chief failure mode, regardless of thickness.
Asunto(s)
Porcelana Dental , Litio , Cerámica , Diseño Asistido por Computadora , Coronas , Diseño de Prótesis Dental , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Ensayo de Materiales , Reproducibilidad de los Resultados , Silicatos , CirconioRESUMEN
The multidisciplinary teams involved in the treatment of individuals with cleft lip and palate are challenged when implants are indicated in the cleft area. Difficulties include obtaining a healthy peri-implant area and, especially, obtaining the natural-looking papilla essential for esthetic success. The area affected by the cleft has a bone deficiency, which is typically augmented with an alveolar bone graft at adolescence. Guidelines for the 3-dimensional placement of implants at the cleft area are presented based on clinical reports. The patients were followed up for at least 1 year. Adoption of the proposed guidelines enables satisfactory esthetic and functional outcomes in patients with cleft lip and palate.