Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Adv Sci (Weinh) ; 11(17): e2309032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403470

RESUMEN

Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal. Tissue-specific changes are also identified. In NP, several fibrotic populations are increased in degenerated IVD, indicating tissue-remodeling. In degenerated AF, a novel disease-associated subset is identified, which expresses disease-promoting genes. It is associated with pathogenic biological processes and the main gene regulatory networks include thrombospondin signaling and FOXO1 transcription factor. In NP and AF cells thrombospondin protein promoted expression of genes associated with TGFß/fibrosis signaling, angiogenesis, and nervous system development. The data reveal new insights of both shared and tissue-specific changes in specific cell populations in AF and NP during IVD degeneration. These identified mechanisms and molecules are novel and more precise targets for IDD prevention and treatment.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Anillo Fibroso/metabolismo , Anillo Fibroso/patología , Masculino , Persona de Mediana Edad , Femenino , Adulto , Disco Intervertebral/metabolismo , Disco Intervertebral/patología
2.
bioRxiv ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38370845

RESUMEN

Single cell RNA sequencing technology has been dramatically changing how gene expression studies are performed. However, its use has been limited to identifying subtypes of cells by comparing cells' gene expression levels in an unbiased manner to produce a 2D plot (e.g., UMAP/tSNE). We developed a new method of placing cells in 2D space. This system, called vSPACE, shows a virtual spatial representation of scRNAseq data obtained from human articular cartilage by emulating the concept of spatial transcriptomics technology, but virtually. This virtual 2D plot presentation of human articular cartage cells generates several zonal distribution patterns, in one or multiple genes at a time, reveling patterns that scientists can appreciate as imputed spatial distribution patterns along the zonal axis. The discovered patterns are explainable and remarkably consistent across all six healthy doners despite their respectively different clinical variables (age and sex), suggesting the confidence of the discovered patterns.

3.
Ann Rheum Dis ; 83(3): 274-276, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37821213

RESUMEN

Animal models of post traumatic osteoarthritis have shown many promising treatments for disease, but human trials have mostly failed to identify effective treatments. This viewpoint suggests that the frequent failure of drug and treatment development in osteoarthritis is due, in part, to the advanced stage of disease of patients in trials and suggests that mirroring the animal model approach might be more successful. It suggests a path forward by enriching trial enrollees with those likely to develop post traumatic OA quickly.


Asunto(s)
Osteoartritis , Animales , Humanos , Osteoartritis/tratamiento farmacológico , Resultado del Tratamiento
4.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37681413

RESUMEN

Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.


Asunto(s)
Neoplasias Óseas , Osteoartritis , Humanos , Animales , Ratones , Factor 4 Similar a Kruppel , Osteoartritis/tratamiento farmacológico , Inflamación , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico
5.
Front Cell Dev Biol ; 11: 1208315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457300

RESUMEN

Objectives: RNA-binding proteins (RBPs) have diverse and essential biological functions, but their role in cartilage health and disease is largely unknown. The objectives of this study were (i) map the global landscape of RBPs expressed and enriched in healthy cartilage and dysregulated in osteoarthritis (OA); (ii) prioritize RBPs for their potential role in cartilage and in OA pathogenesis and as therapeutic targets. Methods: Our published bulk RNA-sequencing (RNA-seq) data of healthy and OA human cartilage, and a census of 1,542 RBPs were utilized to identify RBPs that are expressed in healthy cartilage and differentially expressed (DE) in OA. Next, our comparison of healthy cartilage RNA-seq data to 37 transcriptomes in the Genotype-Tissue Expression (GTEx) database was used to determine RBPs that are enriched in cartilage. Finally, expression of RBPs was analyzed in our single cell RNA-sequencing (scRNA-seq) data from healthy and OA human cartilage. Results: Expression of RBPs was higher than nonRBPs in healthy cartilage. In OA cartilage, 188 RBPs were differentially expressed, with a greater proportion downregulated. Ribosome biogenesis was enriched in the upregulated RBPs, while splicing and transport were enriched in the downregulated. To further prioritize RBPs, we selected the top 10% expressed RBPs in healthy cartilage and those that were cartilage-enriched according to GTEx. Intersecting these criteria, we identified Tetrachlorodibenzodioxin (TCDD) Inducible Poly (ADP-Ribose) Polymerase (TIPARP) as a candidate RBP. TIPARP was downregulated in OA. scRNA-seq data revealed TIPARP was most significantly downregulated in the "pathogenic cluster". Conclusion: Our global analyses reveal expression patterns of RBPs in healthy and OA cartilage. We also identified TIPARP and other RBPs as novel mediators in OA pathogenesis and as potential therapeutic targets.

6.
Mech Ageing Dev ; 212: 111806, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003368

RESUMEN

Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Ratones , Animales , Osteoartritis/genética , Osteoartritis/patología , MicroARNs/genética , Ratones Noqueados , Debilidad Muscular , Condrocitos/patología
7.
Aging (Albany NY) ; 15(6): 1711-1712, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36988500
8.
Arthritis Rheumatol ; 75(7): 1139-1151, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36762426

RESUMEN

OBJECTIVE: Many patients with acromegaly, a hormonal disorder with excessive growth hormone (GH) production, report pain in joints. We undertook this study to characterize the joint pathology of mice with overexpression of bovine GH (bGH) or a GH receptor antagonist (GHa) and to investigate the effect of GH on regulation of chondrocyte cellular metabolism. METHODS: Knee joints from mice overexpressing bGH or GHa and wild-type (WT) control mice were examined using histology and micro-computed tomography for osteoarthritic (OA) pathologies. Additionally, cartilage from bGH mice was used for metabolomics analysis. Mouse primary chondrocytes from bGH and WT mice, with or without pegvisomant treatment, were used for quantitative polymerase chain reaction and Seahorse respirometry analyses. RESULTS: Both male and female bGH mice at ~13 months of age had increased knee joint degeneration, which was characterized by loss of cartilage structure, expansion of hypertrophic chondrocytes, synovitis, and subchondral plate thinning. The joint pathologies were also demonstrated by significantly higher Osteoarthritis Research Society International and Mankin scores in bGH mice compared to WT control mice. Metabolomics analysis revealed changes in a wide range of metabolic pathways in bGH mice, including beta-alanine metabolism, tryptophan metabolism, lysine degradation, and ascorbate and aldarate metabolism. Also, bGH chondrocytes up-regulated fatty acid oxidation and increased expression of Col10a. Joints of GHa mice were remarkably protected from developing age-associated joint degeneration, with smooth articular joint surface. CONCLUSION: This study showed that an excessive amount of GH promotes joint degeneration in mice, which was associated with chondrocyte metabolic dysfunction and hypertrophic changes, whereas antagonizing GH action through a GHa protects mice from OA development.


Asunto(s)
Acromegalia , Cartílago Articular , Osteoartritis de la Rodilla , Ratones , Animales , Masculino , Femenino , Bovinos , Condrocitos/metabolismo , Acromegalia/metabolismo , Acromegalia/patología , Microtomografía por Rayos X , Hormona del Crecimiento/metabolismo , Cartílago Articular/metabolismo , Ratones Transgénicos
9.
Ann Rheum Dis ; 82(5): 710-718, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36627169

RESUMEN

OBJECTIVES: CHRFAM7A is a uniquely human fusion gene that functions as a dominant negative regulator of alpha 7 acetylcholine nicotinic receptor (α7nAChR) in vitro. This study determined the impact of CHRFAM7A on α7nAChR agonist responses, osteoarthritis (OA) severity and pain behaviours and investigated mechanisms. METHODS: Transgenic CHRFAM7A (TgCHRFAM7A) mice were used to determine the impact of CHRFAM7A on knee OA histology, pain severity in OA and other pain models, response to nAchR agonist and IL-1ß. Mouse and human cells were used for mechanistic studies. RESULTS: Transgenic (Tg) TgCHRFAM7A mice developed more severe structural damage and increased mechanical allodynia than wild type (WT) mice in the destabilisation of medial meniscus model of OA. This was associated with a decreased suppression of inflammation by α7nAchR agonist. TgCHRFAM7A mice displayed a higher basal sensitivity to pain stimuli and increased pain behaviour in the monoiodoacetate and formalin models. Dorsal root ganglia of TgCHRFAM7A mice showed increased macrophage infiltration and expression of the chemokine fractalkine and also had a compromised antinociceptive response to the α7nAchR agonist nicotine. Both native CHRNA7 and CHRFAM7A subunits were expressed in human joint tissues and the CHRFAM7A/CHRNA7 ratio was increased in OA cartilage. Human chondrocytes with two copies of CHRFAM7A had reduced anti-inflammatory responses to nicotine. CONCLUSION: CHRFAM7A is an aggravating factor for OA-associated inflammation and tissue damage and a novel genetic risk factor and therapeutic target for pain.


Asunto(s)
Osteoartritis de la Rodilla , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Humanos , Ratones , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Inflamación/genética , Ratones Transgénicos , Nicotina , Osteoartritis de la Rodilla/genética , Dolor/genética
10.
Arthritis Rheumatol ; 75(6): 937-949, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36530063

RESUMEN

OBJECTIVE: NF-κB signaling is an important modulator in osteoarthritis (OA), and IκB kinase ε (IKKε) regulates the NF-κB pathway. This study was undertaken to identify the functional involvement of IKKε in the pathogenesis of OA and the effectiveness of IKKε inhibition as a modulatory treatment. METHODS: IKKε expression in normal and OA human knee joints was analyzed immunohistochemically. Gain- or loss-of-function experiments were performed using human chondrocytes. Furthermore, OA was surgically induced in mice, followed by intraarticular injection of BAY-985, an IKKε/TANK-binding kinase 1 inhibitor, into the left knee joint every 5 days for 8 weeks. Mice were subsequently examined for histologic features of cartilage damage and inflammation. RESULTS: IKKε protein expression was increased in human OA cartilage. In vitro, expression levels of OA-related factors were down-regulated following knockdown of IKKε with the use of small interfering RNA in human OA chondrocytes or following treatment with BAY-985. Conversely, IKKε overexpression significantly increased the expression of OA-related catabolic mediators. In Western blot analysis of human chondrocytes, IKKε overexpression increased the phosphorylation of IκBα and p65. In vivo, intraarticular injection of BAY-985 into the knee joints of mice attenuated OA-related cartilage degradation and hyperalgesia via NF-κB signaling. CONCLUSION: These results suggest that IKKε regulates cartilage degradation through a catabolic response mediated by NF-κB signaling, and this could represent a potential target for OA treatment. Furthermore, BAY-985 may serve as a major disease-modifying compound among the drugs developed for OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Quinasa I-kappa B/metabolismo , Modelos Animales de Enfermedad , Cartílago/metabolismo , Osteoartritis/metabolismo , Articulación de la Rodilla/metabolismo , Condrocitos/metabolismo , Cartílago Articular/metabolismo
11.
Ann Rheum Dis ; 82(3): 403-415, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564153

RESUMEN

OBJECTIVES: Single-cell level analysis of articular cartilage and meniscus tissues from human healthy and osteoarthritis (OA) knees. METHODS: Single-cell RNA sequencing (scRNA-seq) analyses were performed on articular cartilage and meniscus tissues from healthy (n=6, n=7) and OA (n=6, n=6) knees. Expression of genes of interest was validated using immunohistochemistry and RNA-seq and function was analysed by gene overexpression and depletion. RESULTS: scRNA-seq analyses of human knee articular cartilage (70 972 cells) and meniscus (78 017 cells) identified a pathogenic subset that is shared between both tissues. This cell population is expanded in OA and has strong OA and senescence gene signatures. Further, this subset has critical roles in extracellular matrix (ECM) and tenascin signalling and is the dominant sender of signals to all other cartilage and meniscus clusters and a receiver of TGFß signalling. Fibroblast activating protein (FAP) is also a dysregulated gene in this cluster and promotes ECM degradation. Regulons that are controlled by transcription factor ZEB1 are shared between the pathogenic subset in articular cartilage and meniscus. In meniscus and cartilage cells, FAP and ZEB1 promote expression of genes that contribute to OA pathogenesis, including senescence. CONCLUSIONS: These single-cell studies identified a senescent pathogenic cell cluster that is present in cartilage and meniscus and has FAP and ZEB1 as main regulators which are novel and promising therapeutic targets for OA-associated pathways in both tissues.


Asunto(s)
Cartílago Articular , Menisco , Osteoartritis , Humanos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Osteoartritis/patología , Cartílago Articular/metabolismo , Senescencia Celular/genética , Condrocitos/metabolismo
12.
Ann Rheum Dis ; 82(2): 262-271, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36109140

RESUMEN

OBJECTIVES: Osteoarthritis (OA) features ageing-related defects in cellular homeostasis mechanisms in articular cartilage. These defects are associated with suppression of forkhead box O (FoxO) transcription factors. FoxO1 or FoxO3 deficient mice show early onset OA while FoxO1 protects against oxidative stress in chondrocytes and promotes expression of autophagy genes and the essential joint lubricant proteoglycan 4 (PRG4). The objective of this study was to identify small molecules that can increase FoxO1 expression. METHODS: We constructed a reporter cell line with FoxO1 promoter sequences and performed high-throughput screening (HTS) of the Repurposing, Focused Rescue and Accelerated Medchem (ReFRAME) library . Hits from the HTS were validated and function was assessed in human chondrocytes, meniscus cells and synoviocytes and following administration to mice. The most promising hit, the histone deacetylase inhibitor (HDACI) panobinostat was tested in a murine OA model. RESULTS: Among the top hits were HDACI and testing in human chondrocytes, meniscus cells and synoviocytes showed that panobinostat was the most promising compound as it increased the expression of autophagy genes and PRG4 while suppressing the basal and IL-1ß induced expression of inflammatory mediators and extracellular matrix degrading enzymes. Intraperitoneal administration of panobinostat also suppressed the expression of mediators of OA pathogenesis induced by intra-articular injection of IL-1ß. In a murine OA model, panobinostat reduced the severity of histological changes in cartilage, synovium and subchondral bone and improved pain behaviours. CONCLUSION: Panobinostat has a clinically relevant activity profile and is a candidate for OA symptom and structure modification.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratones , Animales , Factores de Transcripción Forkhead , Inhibidores de Histona Desacetilasas/metabolismo , Panobinostat/metabolismo , Osteoartritis/patología , Envejecimiento , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Interleucina-1beta/metabolismo
13.
ACS Nano ; 16(12): 20206-20221, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36418226

RESUMEN

Autoimmune diseases affect over 4% of the world's population. Treatments are generally palliative or use broad spectrum immunosuppressants to reduce symptoms and disease progression. In some diseases, antibodies generated to a single autoantigen are the major cause of pathogenic inflammation, suggesting that treatments to induce tolerance to the autoantigen could be therapeutic. Here we report the development of hybrid nanoparticles (NPs) that induce tolerance in both T cells and B cells. The NPs comprise a lipid monolayer encapsulating a PLGA core loaded with rapamycin that promotes development of regulatory T cells (Tregs). The lipid monolayer displays the protein antigen and a ligand of the B cell inhibitory co-receptor CD22 (CD22L) that act together to suppress activation of B cells recognizing the antigen. We demonstrate that the hybrid NPs decorated with ovalbumin (OVA) elicit tolerance to OVA in naïve mice, as judged by low OVA-specific antibody titers after the challenge. In the K/BxN mouse model of rheumatoid arthritis caused by B and T cell-dependent responses to the self-antigen glucose-6-phosphate-isomerase (GPI), we show that GPI hybrid NPs delay development of disease, with some treated mice remaining arthritis-free for 300 days. We provide evidence that the mechanism of rheumatoid arthritis suppression involves induction of B cell tolerance, as measured by low anti-GPI antibodies and decreased plasma cell populations, and T cell tolerance, as measured by increased Tregs. The results show the potential of this versatile NP platform for inducing immune tolerance to a self-antigen and suppressing autoimmune disease.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Nanopartículas , Ratones , Animales , Autoantígenos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tolerancia Inmunológica , Artritis Reumatoide/tratamiento farmacológico , Lípidos , Ovalbúmina
14.
Arthritis Res Ther ; 24(1): 235, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258202

RESUMEN

BACKGROUND: Animal models of spontaneous osteoarthritis (OA) are sparse and not well characterized. The purpose of the present study is to examine OA-related changes and mechanisms in senescence-accelerated mouse prone 8 (SAMP8) that displays a phenotype of accelerated aging.  METHODS: Knees of male SAMP8 and SAM-resistant 1 (SAMR1) mice as control from 6 to 33 weeks of age were evaluated by histological grading systems for joint tissues (cartilage, meniscus, synovium, and subchondral bone), and µCT analysis. Gene expression patterns in articular cartilage were analyzed by real-time PCR. Immunohistochemistry was performed for OA-related factors, senescence markers, and apoptosis. RESULTS: Starting at 14 weeks of age, SAMP8 exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. From 18 to 33 weeks of age, SAMP8 progressed to partial or full-thickness defects with exposure of subchondral bone on the medial tibia and exhibited synovitis. Histological scoring indicated significantly more severe OA in SAMP8 compared with SAMR1 from 14 weeks [median (interquartile range): SAMR1: 0.89 (0.56-1.81) vs SAMP8: 1.78 (1.35-4.62)] to 33 weeks of age [SAMR1: 1.67 (1.61-1.04) vs SAMP8: 13.03 (12.26-13.57)]. Subchondral bone sclerosis in the medial tibia, bone mineral density (BMD) loss of femoral metaphysis, and meniscus degeneration occurred much earlier than the onset of cartilage degeneration in SAMP8 at 14 weeks of age. CONCLUSIONS: SAMP8 are a spontaneous OA model that is useful for investigating the pathogenesis of primary OA and evaluating therapeutic interventions.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Masculino , Modelos Animales de Enfermedad , Osteoartritis/genética , Osteoartritis/patología , Cartílago Articular/patología , Tibia , Envejecimiento/metabolismo , Proteoglicanos
15.
Aging Cell ; 21(8): e13662, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778837

RESUMEN

Osteoarthritis (OA) is the most common age-related joint disorder with no effective therapy. According to the World Health Organization, OA affects over 500 million people and is characterized by degradation of cartilage and other joint tissues, severe pain, and impaired mobility. Mitochondrial dysfunction contributes to OA pathology. However, interventions to rescue mitochondrial defects in human OA are not available. Urolithin A (Mitopure) is a natural postbiotic compound that promotes mitophagy and mitochondrial function and beneficially impacts muscle health in preclinical models of aging and in elderly and middle-aged humans. Here, we showed that Urolithin A improved mitophagy and mitochondrial respiration in primary chondrocytes from joints of both healthy donors and OA patients. Furthermore, Urolithin A reduced disease progression in a mouse model of OA, decreasing cartilage degeneration, synovial inflammation, and pain. These improvements were associated with increased mitophagy and mitochondrial content, in joints of OA mice. These findings indicate that UA promotes joint mitochondrial health, alleviates OA pathology, and supports Urolithin A's potential to improve mobility with beneficial effects on structural damage in joints.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Anciano , Animales , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Cumarinas , Humanos , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Dolor/metabolismo
16.
Sci Transl Med ; 14(647): eabj5557, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35648809

RESUMEN

How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1, a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.


Asunto(s)
Canales Iónicos , Rendimiento Físico Funcional , Tendones , Animales , Canales Iónicos/genética , Ratones , Estrés Mecánico , Tendones/metabolismo , Factores de Transcripción
17.
Ann Rheum Dis ; 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534137

RESUMEN

OBJECTIVES: Analysing expression patterns of Krüppel-like factor (KLF) transcription factors in normal and osteoarthritis (OA) human cartilage, and determining functions and mechanisms of KLF4 and KLF2 in joint homoeostasis and OA pathogenesis. METHODS: Experimental approaches included human joint tissues cells, transgenic mice and mouse OA model with viral KLF4 gene delivery to demonstrate therapeutic benefit in structure and pain improvement. Mechanistic studies applied global gene expression analysis and chromatin immunoprecipitation sequencing (ChIP-seq). RESULTS: Several KLF genes were significantly decreased in OA cartilage. Among them, KLF4 and KLF2 were strong inducers of cartilage collagen genes and Proteoglycan-4. Cartilage-specific deletion of Klf2 in mature mice aggravated severity of experimental OA. Transduction of human chondrocytes with Adenovirus (Ad) expressing KLF4 or KLF2 enhanced expression of major cartilage extracellular matrix (ECM) genes and SRY-box transcription factor-9, and suppressed mediators of inflammation and ECM-degrading enzymes. Ad-KLF4 and Ad-KLF2 enhanced similar protective functions in meniscus cells and synoviocytes, and promoted chondrocytic differentiation of human mesenchymal stem cells. Viral KLF4 delivery into mouse knees reduced severity of OA-associated changes in cartilage, meniscus and synovium, and improved pain behaviours. ChIP-seq analysis suggested that KLF4 directly bound cartilage signature genes. Ras-related protein-1 signalling was the most enriched pathway in KLF4-transduced cells, and its signalling axis was involved in upregulating cartilage ECM genes by KLF4 and KLF2. CONCLUSIONS: KLF4 and KLF2 may be central transcription factors that increase protective and regenerative functions in joint tissue cells, suggesting that KLF gene transfer or molecules upregulating KLFs are therapeutic candidates for OA.

18.
Quintessence Int ; 53(7): 608-614, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35274517

RESUMEN

This case report presents a novel approach for minimally invasive fully guided apicoectomy of the palatal root of a maxillary first molar using a custom-made 3D-printed template. To date, the development of diagnostic radiographic tools such as high-resolution CBCT devices, as well as of CAD planning software and CAM technologies, like 3D printing, allow for increased application in endodontics. The patient (a 38-year-old woman) suffered from pain on the right side of the face since 4 weeks and was diagnosed with chronic apical periodontitis of the palatal root of the maxillary right first molar. The root treatment of this tooth was followed up recently and the buccal roots showed no pathologic findings. A guided apicoectomy with access from the palate was chosen as elective therapy. 3D radiographic and intraoral surface datasets were imported into an implant planning software and superimposed, and minimally invasive access to the palatal root apex was planned. Subsequently, a tooth-supported drilling template was designed and created by additive manufacturing. A flapless approach was adapted using a punch-drill and the access to the root apex as well as the apical resection were performed with a trephine drill. The connective tissue punch was finally replaced and sutured. No postoperative complication was reported and a complete remission of symptoms was reported after 2 weeks. The follow-up after 21 months showed clinically stable wound conditions and radiologically a slight reossification in the area of the palatal root tip. The presented technique may lead to novel minimally invasive approaches for the preservation of infected maxillary molars.


Asunto(s)
Apicectomía , Endodoncia , Adulto , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Diente Molar/diagnóstico por imagen , Diente Molar/cirugía , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/cirugía
19.
Swiss Dent J ; 132(2): 113-116, 2022 Feb 07.
Artículo en Alemán | MEDLINE | ID: mdl-35106988

RESUMEN

This case report illustrates a new application of autologous dentin for defect augmentation. After cystectomy of a follicular cyst in the maxilla, autologous particulated dentin from the wisdom tooth is used for augmentation due to periodontal compromise of neighbouring teeth. The combination of simultaneous wisdom tooth removal and augmentation is a convenient option in this case. Dentin augmentation is a cost-effective and minimally invasive autologous graft technique. The decision which treatment method for a jaw cyst is the most effective for the patient is a well discussed topic. Factors as expansion, type of cyst, localisation, duration of treatment, and predictability have to be calculated when choosing the treatment strategy. Most cysts heal without grafting, however, periodontal situation, sinus association and predictability in aesthetics led to the decision of grafting necessity in this presented case.


Asunto(s)
Aumento de la Cresta Alveolar , Cistectomía , Proceso Alveolar , Trasplante Óseo , Dentina , Humanos
20.
Nanomedicine (Lond) ; 17(2): 77-93, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991339

RESUMEN

Aim: To mimic the ultrastructural morphology of the meniscus with nanofiber scaffolds coupled with controlled growth factor delivery to modulate cellular performance for tissue engineering of menisci. Methods: The authors functionalized collagen nanofibers by conjugating heparin to the following growth factors for sustained release: PDGF-BB, TGF-ß1 and CTGF. Results: Incorporating growth factors increased human meniscal and synovial cell viability, proliferation and infiltration in vitro, ex vivo and in vivo; upregulated key genes involved in meniscal extracellular matrix synthesis and enhanced generation of meniscus-like tissue. Conclusion: The authors' results indicate that functionalizing collagen nanofibers can create a cell-favorable micro- and nanoenvironment and can serve as a system for sustained release of bioactive factors.


Lay abstract Meniscal tears are a common injury to the part of the knee called the meniscus. Loss of meniscal tissue can lead to arthritis. In this study, the authors aimed to recreate the structure of the human meniscus using very thin (nanometers in diameter) fibers made of collagen. The authors also attached proteins called growth factors to the fibers. The addition of these proteins increased the growth rate of cells collected from human knee tissue. The levels of important genes involved in meniscal tissue formation were increased in these cells. These results show that adding proteins such as growth factors to collagen nanofibers can create an environment beneficial to growing meniscal tissue. Successful development of this technology could help in repairing meniscal damage in people.


Asunto(s)
Menisco , Ingeniería de Tejidos , Colágeno , Matriz Extracelular , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA