Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 606, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294589

RESUMEN

BACKGROUND: With the extensive use of chromosomal microarray analysis (CMA), an increasing number of variants of uncertain significance (VOUS) have been detected. The objective of the present study was to elucidate the pathogenicity and clinical variability associated with isolated recurrent 4q35.2 microduplications within the Chinese population. METHODS: The present study involved 14 cases of isolated recurrent 4q35.2 microduplication (including 12 fetuses and 2 cases of pediatric patients) out of 5,188 subjects who sought genetic consultation at our hospital and received CMA detection. WES technology was subsequently utilized to identify additional sequence variants in a patient with multiple clinical anomalies. RESULTS: All 14 cases exhibited isolated recurrent 4q35.2 microduplications spanning a 1.0-Mb region encompassing the ZFP42 gene. Among the 12 fetuses, 11 displayed normal clinical features, while one was born with renal duplication and hydronephrosis. Additionally, in the two pediatric patients, WES was performed for Case 1, who presented with congenital cataracts, severe intellectual disability, and seizures. This patient inherited the 4q35.2 microduplication from his phenotypically normal mother. WES identified a novel NM_000276:c.2042G > T (p.G681V) variant in the OCRL gene, which is associated with Lowe syndrome and may account for the observed phenotypic variability within this family. CONCLUSION: A series of 14 cases with isolated recurrent 4q35.2 microduplications were investigated, highlighting a potential association with increased susceptibility to renal abnormalities. Further, the present findings may expand the mutation spectrum of the OCRL gene associated with Lowe syndrome and provide valuable insights for the genetic etiological diagnosis of patients with unexplained copy number variants.


Asunto(s)
Duplicación Cromosómica , Adulto , Femenino , Humanos , Masculino , Embarazo , China , Cromosomas Humanos Par 4/genética , Análisis Citogenético , Pueblos del Este de Asia/genética , Diagnóstico Prenatal , Estudios Retrospectivos
2.
J Mol Diagn ; 26(4): 267-277, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38280421

RESUMEN

Exome sequencing is becoming a first-tier clinical diagnostic test for Mendelian diseases, drastically reducing the time and cost of diagnostic odyssey and improving the diagnosis rate. Despite its success, exome sequencing faces practical challenges in assessing the pathogenicity of numerous intronic and synonymous variants, leaving a significant proportion of patients undiagnosed. In this study, a whole-blood transcriptome database was constructed that showed the expression profile of 2981 Online Mendelian Inheritance in Man disease genes in blood samples. Meanwhile, a workflow integrating exome sequencing, blood transcriptome sequencing, and in silico prediction tools to identify and validate splicing-altering intronic or synonymous variants was proposed. Following this pipeline, seven synonymous variants in eight patients were discovered. Of these, the functional evidence of c.981G>A (PIGN), c.1161A>G (ALPL), c.858G>A (ATP6AP2), and c.1011G>T (MTHFR) have not been reported previously. RNA sequencing validation confirmed that these variants induced aberrant splicing, expanding the disease-causing variant spectrum of these genes. Overall, this study shows the feasibility of combining multi-omics data to identify splicing-altering variants, especially the power of RNA sequencing. It also reveals that synonymous variants, which often are overlooked in standard diagnostic approaches, comprise an important portion of unresolved genetic diseases.


Asunto(s)
Exoma , Transcriptoma , Humanos , Exoma/genética , Transcriptoma/genética , Secuenciación del Exoma , Análisis de Secuencia de ARN , Intrones/genética , Receptor de Prorenina
3.
J Hum Genet ; 69(1): 3-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37821671

RESUMEN

Complex chromosomal rearrangements (CCRs) can result in spontaneous abortions, infertility, and malformations in newborns. In this study, we explored a familial CCR involving chromosome 6 by combining optical genomic mapping (OGM) and molecular cytogenetic methodologies. Within this family, the father and the paternal grandfather were both asymptomatic carriers of an identical balanced CCR, while the two offspring with an unbalanced paternal-origin CCR and two microdeletions presented with clinical manifestation. The first affected child, a 5-year-old boy, exhibited neurodevelopmental delay, while the second, a fetus, presented with hydrops fetalis. SNP-genotype analysis revealed a recombination event during gamete formation in the father that may have contributed to the deletion in his offspring. Meanwhile, the couple's haplotypes will facilitate the selection of normal gametes in the setting of assisted reproduction. Our study demonstrated the potential of OGM in identifying CCRs and its ability to work with current methodologies to refine precise breakpoints and construct accurate haplotypes for couples with a CCR.


Asunto(s)
Cromosomas Humanos Par 6 , Translocación Genética , Preescolar , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Aberraciones Cromosómicas , Cromosomas Humanos Par 6/genética , Análisis Citogenético , Genómica
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(12): 1211-1215, 2021 Dec 10.
Artículo en Chino | MEDLINE | ID: mdl-34839509

RESUMEN

OBJECTIVE: To explore the pathogenesis of two siblings (including a fetus) from a pedigree affected with Joubert syndrome. METHODS: Peripheral blood samples of the proband and his parents as well as amniotic fluid and abortion tissues of the fetus were collected. Part of the samples were used for the extraction of DNA, and whole exome sequencing (WES) was carried out to screen potential variants in the proband and his parents. Suspected variants were subjected to bioinformatics analysis with consideration of the clinical phenotype, and were verified by Sanger sequencing of the proband, fetus and their parents.The remainders were used for the extraction of RNA, and the mechanism of splicing variant was validated by reverse transcription-PCR (RT-PCR). RESULTS: WES showed that both patients have carried c.175C>T (p.R59X) and c.553+1G>A compound heterozygous variants of the TMEM237 gene. Among these, c.175C>T was a nonsense mutation inherited from the asymptomatic mother, while c.553+1G>A was an alternative splicing mutation inherited from the asymptomatic father. RT-PCR showed that this variant has resulted in aberrant splicing by exon skipping. CONCLUSION: The compound heterozygous variants of the TMEM237 gene probably underlay the etiology of Joubert syndrome in this pedigree. Above finding has enriched the phenotype and variant spectrum of the TMEM237 gene, and facilitated genetic counseling and prenatal diagnosis for the family.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Anomalías Múltiples/genética , Cerebelo/anomalías , Femenino , Genotipo , Humanos , Mutación , Linaje , Fenotipo , Embarazo , Retina/anomalías
5.
Mol Ecol Resour ; 17(6): 1318-1329, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28181736

RESUMEN

Diploid Thinopyrum elongatum (EE, 2n = 2x = 14) and related polyploid species constitute an important gene pool for improving Triticeae grain and forage crops. However, the genomic and molecular marker resources are generally poor for these species. To aid the genetic, molecular, breeding and ecological studies involving Thinopyrum species, we developed a strategy for mining and validating E-genome-specific SNPs using Th. elongatum and common wheat (Triticum aestivum, AABBDD, 2n = 6x = 42) as experimental materials. By comparing the transcriptomes between Chinese Spring (CS, a common wheat variety) and the CS-Th. elongatum octoploid, 35,193 candidate SNPs between E genome genes and their common wheat orthologs were computed. Through comparative genomic analysis, these SNPs were putatively assigned to the seven individual E genome chromosomes. Among 420 randomly selected SNPs, 373 could be validated. Thus, approximately 89% of the mined SNPs may be authentic with respect to their polymorphism and chromosomal location. Using 14 such SNPs as molecular markers, complex E genome introgressions were reliably identified in 78 common wheat-Th. elongatum hybrids, and the structural feature of a novel recombinant chromosome formed by 6E and 7E was revealed. Finally, based on testing 33 SNPs assigned to chromosome 3E in multiple genotypes of Th. elongatum, Pseudoroegneria stipifolia (carrying the St genome related to E) and common wheat, we suggest that some of the SNP markers may also be applicable for genetic studies within and among the Thinopyrum species (populations) carrying E and/or St genomes in the future.


Asunto(s)
Evolución Molecular , Poaceae/clasificación , Poaceae/genética , Polimorfismo de Nucleótido Simple , Quimera , Genoma de Planta , Transcriptoma
6.
Plant Physiol Biochem ; 86: 91-99, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25438141

RESUMEN

Brassinosteroids (BRs), known as a kind of phytohormones, play essential roles in plant growth and development. Although the studies on the BR biosynthesis and signaling are extensive in Arabidopsis, little is known in temperate cereals. In this study, bdbrd1-1, a T-DNA insertion mutant from Brachypodium distachyon, was isolated and characterized in details. The bdbrd1-1 mutant showed lots of cellular and morphogenetic defects, including shortened cell shapes, severe dwarfing, twisted leaves and sterile spikes. Sequencing the flanking fragment of the T-DNA and complementation by genomic DNA in the mutant, confirmed that the developmental defects are caused by the T-DNA insertion in BdBRD1, a possible brassinosteroid C-6 oxidase gene. Application of 24-epicastasterone could partly rescue the bdbrd1-1 dwarfing phenotype. Expression analysis of BdBRD1 suggested that bdbrd1-1 is probably a null mutant and its wild type transcript is expressed in various tissues and highest in the leaf sheaths. Meanwhile, measurements on leaf numbers of the main stems or days to the emergence of the inflorescences suggested that bdbrd1-1 is late-flowering. The late-flowering phenotype could be converted by vernalization treatment, although there lacks a typical FLC gene in B. distachyon. The current data provide an insight into the relationship between BRs biosynthesis and individual development in B. distachyon, an emerging model plant for the temperate cereals.


Asunto(s)
Brachypodium/metabolismo , Brasinoesteroides/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Colestanoles/farmacología , ADN Bacteriano/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Microscopía Electrónica de Rastreo , Mutagénesis Insercional , Oxidorreductasas/clasificación , Oxidorreductasas/genética , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
7.
PLoS One ; 8(9): e74859, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098671

RESUMEN

In higher plants, seed storage proteins (SSPs) are frequently expressed from complex gene families, and allelic variation of SSP genes often affects the quality traits of crops. In common wheat, the Glu-D1 locus, encoding 1Dx and 1Dy SSPs, has multiple alleles. The Glu-D1d allele frequently confers superior end-use qualities to commercial wheat varieties. Here, we studied the haplotype structure of Glu-D1 genomic region and the origin of Glu-D1d. Using seven diagnostic DNA markers, 12 Glu-D1 haplotypes were detected among common wheat, European spelt wheat (T. spelta, a primitive hexaploid relative of common wheat), and Aegilops tauschii (the D genome donor of hexaploid wheat). By comparatively analyzing Glu-D1 haplotypes and their associated 1Dx and 1Dy genes, we deduce that the haplotype carrying Glu-D1d was likely differentiated in the ancestral hexaploid wheat around 10,000 years ago, and was subsequently transmitted to domesticated common wheat and T. spelta. A group of relatively ancient Glu-D1 haplotypes was discovered in Ae. tauschii, which may serve for the evolution of other haplotypes. Moreover, a number of new Glu-D1d variants were found in T. spelta. The main steps in Glu-D1d differentiation are proposed. The implications of our work for enhancing the utility of Glu-D1d in wheat quality improvement and studying the SSP alleles in other crop species are discussed.


Asunto(s)
Evolución Molecular , Variación Genética , Haplotipos/genética , Fenotipo , Proteínas de Almacenamiento de Semillas/genética , Triticum/genética , Secuencia de Bases , Cruzamiento/métodos , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA