RESUMEN
Fermentation stage is a crucial factor for flavor profiles formation of hawthon wine. Thus, comprehensive knowledge of dynamic relationship between nonvolatile (NVOCs) and volatile aroma compounds (VOCs) from hawthorn wine at different fermentation stages was investigated by GC-MS and HPLC coupled with multivariate analysis. The increase of alcohols/esters/acids but decrease of terpenes/aldehydes/ketones was observed as fermentation extension. Specifically, OAV of ethyl acetate, ethyl caprylate, and ethyl caprate was > 50 from the 3rd day to 10th day, giving more fruity properties. Multivariate analysis showed that 1-hexanol, ethyl myristate, isobutyric acid, et al., were linked to the sensory evaluation of "sweet", "floral" and "fruity", and fructose, glucose and bitter amino acids were responsible for reduction of "bitterness" and "astringency". Additionally, VOCs were positively correlated with organic acids while negative to amino acids/soluble sugars, probably due to metabolization as precursors, providing references for aroma enhancement by regulating NVOCs precursors.
Asunto(s)
Crataegus , Fermentación , Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Gusto , Compuestos Orgánicos Volátiles , Vino , Vino/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Humanos , Aromatizantes/química , Aromatizantes/metabolismo , Análisis Multivariante , Crataegus/química , Femenino , Masculino , AdultoRESUMEN
The objective of this study was to examine the sensory interactions between lactones and ketones in a Cheddar simulation matrix through perceptual interaction analysis. The olfactory thresholds of 6 key lactones had values ranging from 8.32 to 58.88 µg/kg, whereas those of the 4 key ketones ranged from 6.61 to 660.69 µg/kg. Both Feller's additive model and σ-τ plots demonstrated complex interactions in 24 binary mixtures composed of the 6 lactones and 4 ketones, including synergy, addition, and masking effects. Specifically, we found that 6 binary mixtures exhibited aroma synergistic effects using both methods. Moreover, the σ-τ plot showed a synergistic effect of aroma in 3 ternary mixtures. The U-model further confirmed the synergistic effects of the 6 groups of binary systems and 3 groups of ternary systems on aroma at actual cheese concentrations. In an aroma addition experiment, the combination of δ-octalactone and diacetyl in binary mixtures had the most pronounced effect on enhancing milk flavor. In ternary mixtures, 2 combinations, namely δ-octalactone/δ-dodecalactone/diacetyl and γ-dodecalactone/δ-dodecalactone/acetoin, significantly enhanced the milky and sweet aroma properties of cheese, while also enhancing the overall acceptability of the cheese aroma.
Asunto(s)
Queso , Cetonas , Lactonas , Odorantes , Queso/análisis , Cetonas/análisis , Animales , Gusto , Leche/químicaRESUMEN
The adulteration of soymilk (SM) into raw bovine milk (RM) to gain profit without declaration could cause a health risk. In this study, electronic nose (E-nose) and headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) were applied to establish a rapid and effective method to identify adulteration in RM with SM. The obtained data from HS-GC-IMS and E-nose can distinguish the adulterated samples with SM by principal component analysis. Furthermore, a quantitative model of partial least squares was established. The detection limits of E-nose and HS-GC-IMS quantitative models were 1.53% and 1.43%, the root mean square errors of prediction were 0.7390 and 0.5621, the determination coefficients of prediction were 0.9940 and 0.9958, and the relative percentage difference were 10.02 and 13.27, respectively, indicating quantitative regression and good prediction performances of SM adulteration levels in RM were achieved. This research can provide scientific information on the rapid, non-destructive and effective adulteration detection for RM.
RESUMEN
Stinky tofu is a traditional Chinese food with wide consumption in China. Nevertheless, the dynamic changes in the flavour of stinky tofu during storage have yet to be investigated. In this study, the flavour changes of stinky tofu over six different storage periods were comprehensively analysed through sensory, electronic nose and gas chromatography-mass spectrometry (GC-MS) analyses. The results of the sensory and electronic nose analyses confirmed the changes in the flavour of stinky tofu across different storage periods. In the GC-MS analysis, 60 volatile compounds were detected during storage, and the odour activity values indicated that 29 of these 60 compounds significantly contributed to the aroma profile. During storage, the alcohol concentration of the stinky tofu gradually decreased while the acid and ester concentrations increased. According to a partial least squares analysis, 2-phenylethyl acetate, 2-phenylethyl propanoate, p-cresol, and phenylethyl alcohol, which were detected after 10 days of storage, promoting the release of an overripe apple-like odour from the stinky tofu. Findings regarding the flavour changes and characteristics of stinky tofu during different storage periods can provide a potential reference for recognising the quality of these products.
RESUMEN
Physicochemical properties and morphological features of pectin in high-pressure-processing (JHPP) and thermal-processing (JTP) treated cloudy hawthorn juice were investigated based on acid heating extraction. Pectin from hawthorn juice was identified as low methoxy pectin (41.77%), which was significantly reduced to 34.56%-39.51% from JHPP, while pectin esterification degree (DE) from JTP increased to 45.58%, which can also be confirmed by Fourier transform infrared spectroscopy. In comparison to control, pectin linearity of JHPP and JTP significantly decreased with more highly branched-chains. However, no significate difference was observed in thermostability, crystallinity and main functional groups. Interestingly, a large number of aggregations was observed in JHPP pectin, and the intermodular distance of JTP pectin was enhanced, which was consistent with the results of viscosity, molecular weight and DE. These findings provided insights into utilization of hawthorn pectin and application of high-pressure processing (HPP) for improving quality property of fruit products by pectin modification.
Asunto(s)
Crataegus , Pectinas , Pectinas/química , Crataegus/química , Calefacción , Viscosidad , Peso MolecularRESUMEN
Excessive and uncoordinated bitterness of Shaoxing Huangjiu, a traditional Chinese rice wine, reduces its acceptance by consumers. To determine the compounds responsible for this bitterness, gas chromatography-mass spectrometry and high-performance liquid chromatography were performed on four types of Shaoxing Huangjiu (Yuanhong, Huadiao, Shanniang, and Xiangxue wine) for targeted quantitation of candidate compounds known to contribute to bitterness. Calculations of dose-over-threshold factors revealed that isoamyl alcohol, 1-hexanol, phenylethanol, ethyl butyrate, ethyl lactate, furfural, histidine, and arginine were important bitter compounds. Taste recombination experiments demonstrated that a recombination model constructed using the screened known bitter compounds showed good similarity with the original sample in bitter taste. Furthermore, omission experiments revealed that isobutanol, isoamyl alcohol, 1-hexanol, phenylethanol, ethyl acetate, ethyl butyrate, ethyl lactate, furfural, arginine, and valine were the compounds affecting the bitter taste perception. This study provides a certain guiding effect on the bitterness control and taste improvement of Shaoxing Huangjiu.
Asunto(s)
Alcohol Feniletílico , Gusto , Arginina , Butiratos , Furaldehído , Hexanoles , Histidina , Lactatos , Pentanoles , Recombinación Genética , ValinaRESUMEN
To achieve rapid on-site identification of raw milk adulteration and simultaneously quantify the levels of various adulterants, we combined Raman spectroscopy with chemometrics to detect 3 of the most common adulterants. Raw milk was artificially adulterated with maltodextrin (0.5-15.0%; wt/wt), sodium carbonate (10-100 mg/kg), or whey (1.0-20.0%; wt/wt). Partial least square discriminant analysis (PLS-DA) classification and a partial least square (PLS) regression model were established using Raman spectra of 144 samples, among which 108 samples were used for training and 36 were used for validation. A model with excellent performance was obtained by spectral preprocessing with first derivative, and variable selection optimization with variable importance in the projection. The classification accuracy of the PLS-DA model was 95.83% for maltodextrin, 100% for sodium carbonate, 95.84% for whey, and 92.25% for pure raw milk. The PLS model had a detection limit of 1.46% for maltodextrin, 4.38 mg/kg for sodium carbonate, and 2.64% for whey. These results suggested that Raman spectroscopy combined with PLS-DA and PLS model can rapidly and efficiently detect adulterants of maltodextrin, sodium carbonate, and whey in raw milk.
Asunto(s)
Espectrometría Raman , Suero Lácteo , Animales , Carbonatos , Quimiometría , Contaminación de Alimentos/análisis , Análisis de los Mínimos Cuadrados , Leche/química , Polisacáridos , Espectrometría Raman/métodos , Suero Lácteo/química , Proteína de Suero de Leche/análisisRESUMEN
This study focused on the development of a method for the rapid detection of acid-neutralising adulterants in raw milk using a milk composition analyser. Qualitative analysis for the discrimination of different acid-neutralising acid adulterants in raw milk and quantification of NaSCN in adulterated raw milk were conducted, combined with chemometrics. The results showed that the milk component analyser combined with principal component analysis (PCA) could judge whether raw milk samples were adulterated but cannot identify the types of adulterated substances. Although partial least squares discrimination analysis (PLS-DA) can distinguish some adulterated raw milk samples, the accuracy rate was only 56.3%; the random forest (RF) model could recognise most adulterated raw milk samples with an accuracy rate of 97.5% and the F1-score was 0.9638. In the prediction model of NaSCN adulteration concentration in raw milk constructed by RF, the coefficient of determination (R2) was 0.9889, and the root means square error (RMSE) was 3.28 × 10-4, suggesting a high prediction performance of the model. The effectiveness of the method for the detection of real samples in practical production was also proved. Based on the above results, it could conclude that the milk component analyser, combined with chemometrics, effectively distinguished acid-neutralising adulterants in raw milk. These findings provide a reference for the rapid detection of adulterants and the quality control of raw milk.
Asunto(s)
Contaminación de Alimentos , Leche , Animales , Quimiometría , Contaminación de Alimentos/análisis , Análisis de los Mínimos Cuadrados , Análisis de Componente PrincipalRESUMEN
Diacetyl and acetoin are key aroma components of fermented milk but are produced in low concentrations by starter cultures. In this study, we expressed NADH oxidase, acetolactate synthase, and inactivated acetolactate decarboxylase in Lacticaseibacillus casei TCS to generate recombinant L. casei strains, and investigated the effects of the genes encoding these enzymes on diacetyl and acetoin production during milk fermentation. In the single-gene recombinant strains tested, diacetyl concentrations were highest in milk fermented by L. casei TCSI-nox (nox gene overexpressed, 3.68 mg/kg), whereas acetoin concentrations were highest in milk fermented by L. casei TCS-ΔalsD (alsD gene deleted, 32.94 mg/kg). Moreover, diacetyl and acetoin concentrations were higher in the inducible strains than in the corresponding constitutive strains (e.g., TCSI-nox vs. TCSC-nox, and TCSI-ΔalsD-nox vs. TCSC-ΔalsD-nox). This phenomenon was also reflected in the protein expression levels and enzyme activities. In the double-gene recombinant strains tested, the highest concentrations of diacetyl and acetoin were produced by L. casei TCSI-ΔalsD-nox (nox overexpressed and alsD deleted, 4.66 mg/kg, 69.62 mg/kg, respectively). The triple-gene recombinant L. casei TCS-ΔalsD-nox-alsS produced the highest concentrations of diacetyl and acetoin, which were 2.38 and 11.19 times, respectively, the concentrations produced by the original strain. These results show that the nox, alsS, and alsD genes make key contributions to the biosynthesis of diacetyl and acetoin by L. casei. The modification of multiple genes had a synergistic effect, leading to greatly increased synthesis of diacetyl and acetoin by L. casei during its fermentation of milk.
Asunto(s)
Acetoína , Lacticaseibacillus casei , Animales , Diacetil , Fermentación , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Leche/metabolismoRESUMEN
To evaluate the perceptual interactions among important lactone compounds in cheddar cheese, a molecular-level flavoromic approach, in combination with perceptual interaction analysis, was applied. Six aroma-active lactones with flavor dilution factors ranging from 4 to 128 were identified in three cheddar samples by gas chromatography-olfactometry-mass spectrometry. Odor thresholds of these six aroma-active lactones were determined with values from 7.16 to 30.03 µg/kg using a deodorized cheddar matrix. The odor activity value approach demonstrated complicated interactions among the 15 binary mixtures of six important lactones, including additive, synergistic, or masking effects. Based on partial differential odor intensities, each lactone with similar degrees of perceptual interactions in binary mixtures tends to present synergistic or masking effects. Owing to the difference in the chemical structure and mixture composition, δ-dodecalactone and γ-dodecalactone caused promotive and inhibitory effects on the expression of lactone fruity aroma, respectively.
Asunto(s)
Queso , Compuestos Orgánicos Volátiles , Queso/análisis , Lactonas , Odorantes , Olfatometría , Compuestos Orgánicos Volátiles/análisisRESUMEN
The study aimed to evaluate the effect of high-pressure (HPP, 300/600 MPa for 2 and 6 min) and thermal processing (TP, 65 °C/30 min) on microbial shelf-life, enzyme-activity and quality-attributes of cloudy hawthorn berry juice (CHBJ) after processing and during storage (4 °C). The CHBJ shelf-life was at least 150 days when processed by HPP. No significant difference was observed in pH and titratable acidity (p > 0.05), while HPP significantly increased soluble sugar (p < 0.05) and simulated some fruity aroma compounds which improved the taste and flavor of CHBJ. However, HPP inhabited ineffectively enzyme-activity in comparison to TP, causing significant color changes (ΔE = 4.98 ± 0.03-5.10 ± 0.07) during 30-day storage (p < 0.05). Although particle size increased after HPP treatment, significant increases (68.76%-926.95%) were observed in viscosity (p < 0.05), due to enhanced extractability or modification of pectin induced by HPP, resulting in higher consistency of CHBJ. HPP is promising to extend shelf-life and improve quality-attributes of CHBJ.
Asunto(s)
Crataegus , Manipulación de Alimentos , Frutas , Presión , GustoRESUMEN
Hyperoside (HYP) has various potential benefits, however, its low water-solubility and poor bioavailability have restricted its application. Here, HYP-loaded zein-tea polyphenols (TP)-pectin ternary complex nanoparticles (Z/TP/P-HYP) were prepared by the antisolvent precipitation method for HYP delivery. The formed Z/TP/P-HYP are negatively charged spherical particles with a size of 246 nm, and have the highest HYP encapsulation efficiency (94.2%) at TP was 0.25 mg/mL. Fourier transform infrared spectroscopy revealed that hydrogen bonding, electrostatic interactions, and hydrophobic effects were major interactions to Z/TP/P-HYP formation. Differential scanning calorimetry confirmed that encapsulated HYP was in an amorphous state. Freeze-dried Z/TP/P-HYP displayed good water-redispersibility and high particle yield (95.2%). Z/TP/P-HYP exhibited improved pH (2.0-8.0) and ionic (0-500 mM) stability. Furthermore, Z/TP/P-HYP demonstrated stronger antioxidant properties than free HYP and provided HYP sustained release under simulated gastrointestinal conditions. Therefore, Z/TP/P-HYP have great potential as an effective HYP delivery system for applications in foods.
Asunto(s)
Nanopartículas , Zeína , Tamaño de la Partícula , Pectinas , Polifenoles , Quercetina/análogos & derivados , TéRESUMEN
The objective of this study was to characterize the variations in fatty acid (FA) profile during 7 days of colostrum production and 5 months of mature milk production in Laoshan goats. The individual FA profiles of each sample were investigated by gas chromatography-mass spectrometry. Significant differences in FAs were found between colostrum and mature milk. The contents of saturated fatty acids (SFA), unsaturated fatty acids (UFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA), and sum of C6, C8, and C10 (SC6+C8+C10 ) were all significantly affected by lactation period. Furthermore, there was no significant difference in the ratio of UFA/SFA or C18:2 (cis9, cis12-octadecadienoic acid)/C18:3 (all cis-9,12,15-octadecatrienoic acid) during the lactation period. The highest concentrations of SC6+C8+C10 , UFA, MUFA, and PUFA appeared in colostrum, but the highest SFA content was in mature milk. The highest proportions of SC6+C8+C10 and SFA were 11.32% and 79.55% on 5th day and 135th day respectively. By contrast, the lowest proportion of UFA was 20.45% on the 135th day. C14:0 (10.93%-12.87%), C16:0 (27.54%-36.65%), C18:0 (10.47%-14.59%), and C18:1 (18.80%-30.61%) were the most predominant FAs in goat milk with significant differences during the 135 days lactation period except C18:0. In conclusion, the results of this study suggest that the lactation time has a pronounced effect on the FA compositions of goat milk.