RESUMEN
While pesticide use is subject to strict regulatory oversight worldwide, it remains a main concern for environmental protection, including biodiversity conservation. This is partly due to the current regulatory approach that relies on separate assessments for each single pesticide, crop use, and non-target organism group at local scales. Such assessments tend to overlook the combined effects of overall pesticide usage at larger spatial scales. Integrative landscape-based approaches are emerging, enabling the consideration of agricultural management, the environmental characteristics, and the combined effects of pesticides applied in a same or in different crops within an area. These developments offer the opportunity to deliver informative risk predictions relevant for different decision contexts including their connection to larger spatial scales and to combine environmental risks of pesticides, with those from other environmental stressors. We discuss the needs, challenges, opportunities and available tools for implementing landscape-based approaches for prospective and retrospective pesticide Environmental Risk Assessments (ERA). A set of "building blocks" that emerged from the discussions have been integrated into a conceptual framework. The framework includes elements to facilitate its implementation, in particular: flexibility to address the needs of relevant users and stakeholders; means to address the inherent complexity of environmental systems; connections to make use of and integrate data derived from monitoring programs; and options for validation and approaches to facilitate future use in a regulatory context. The conceptual model can be applied to existing ERA methodologies, facilitating its comparability, and highlighting interoperability drivers at landscape level. The benefits of landscape-based pesticide ERA extend beyond regulation. Linking and validating risk predictions with relevant environmental impacts under a solid science-based approach will support the setting of protection goals and the formulation of sustainable agricultural strategies. Moreover, landscape ERA offers a communication tool on realistic pesticide impacts in a multistressors environment for stakeholders and citizens.
Asunto(s)
Monitoreo del Ambiente , Plaguicidas , Agricultura , Conservación de los Recursos Naturales/métodos , Productos Agrícolas , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Medición de RiesgoRESUMEN
Two monophyletic Daphnia species (Daphnia magna and D. similis) were exposed to a sub-lethal concentration of Pb (50 µg/L) for nine generations under two food regimes (usual and restricted) and analyzed for acetylcholinesterase (AChE) activity, first reproduction delay, lifespan, and net reproductive rate (R0) at the subcellular, individual, and population levels, respectively. In the sixth generation, Pb-acclimated neonates were moved to clean media for three more generations to check for recovery. The net reproductive rate (R0) of D. magna was not affected by Pb. However, Pb stimulated reproduction, reduced lifespan, and decreased AChE activity. First reproduction delay and lifespan did not improve during the recovery process, suggesting a possible genetic adaptation. Food restriction reduced R0, lifespan, delayed hatching, and increased AChE activity; the opposite outcomes were observed for D. similis. The full recovery shown by R0 suggests the physiological acclimation of D. similis. Under food restriction, the animals exhibited a reduction of R0 and lifespan, delayed first reproduction, and increased AChE activity; however, there was no effect of Pb. The recovery process under food restriction showed that D. similis might not cope with Pb exposure, indicating a failed recovery. Such outcomes indicate that one model species' sensitivity may not represent another's sensitivity.
Asunto(s)
Daphnia , Plomo , Reproducción , Contaminantes Químicos del Agua , Animales , Daphnia/fisiología , Daphnia/efectos de los fármacos , Plomo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Longevidad/efectos de los fármacosRESUMEN
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Asunto(s)
Compuestos de Bencidrilo , Monitoreo del Ambiente , Contaminantes Ambientales , Fenoles , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Monitoreo del Ambiente/métodos , Animales , Humanos , Disruptores Endocrinos/toxicidadRESUMEN
The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor). Larvae were exposed to feeding substrate with varying B(a)P concentrations (0.03, 0.3, and 3 mg kg-1), and uptake (21 days in B(a)P-contaminated substrate) and elimination (21 days in B(a)P-free substrate) kinetics were subsequently assessed. The results showed that YMW can eliminate B(a)P, revealing dose-dependent B(a)P bioaccumulation in these insects. Larvae fed on a substrate with 0.03 mg kg-1 accumulated B(a)P over 21 days, presenting values of 0.049 (Standard deviation - 0.011) mg kg-1 and a kinetic-based (BAFkinetic) of 1.93 g substrate g organism-1, exceeding the EU regulatory limits for food. However, with a B(a)P half-life (DT50) of 4.19 days in the larvae, an EU legislation safety criterion was met after a 13-day depuration period in clean substrate. Larvae exposed to substrates with 0.3 and 3 mg kg-1 showed B(a)P accumulation, with BAFkinetic values of 3.27 and 2.09 g substrate g organism-1, respectively, not meeting the current legal standards for food consumption at the end of the exposure to B(a)P. Although the B(a)P half-life values after 35 days were 4.30 and 10.22 days (DT50s), the larvae retained B(a)P levels exceeding permitted food safety limits. These findings highlight a significant oversight in regulating PAHs in animal feed and the need for comprehensive safety evaluations of PAH hazards in edible insects for improved PAH feeding guidelines.
Asunto(s)
Benzo(a)pireno , Larva , Tenebrio , Animales , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Larva/efectos de los fármacos , Toxicocinética , Insectos Comestibles , Bioacumulación , Contaminación de AlimentosRESUMEN
Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Conventional therapies are followed by poor patient survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Gene therapy has emerged as an exciting and innovative tool in cancer therapy. Its combination with chemotherapy has significantly improved therapeutic outcomes. In line with this, our team has developed temozolomide-transferrin (Tf) peptide (WRAP5)/p53 gene nanometric complexes that were revealed to be biocompatible with non-cancerous cells and in a zebrafish model and were able to efficiently target and internalize into SNB19 and U373 glioma cell lines. The transfection of these cells, mediated by the formulated peptide-drug/gene complexes, resulted in p53 expression. The combined action of the anticancer drug with p53 supplementation in cancer cells enhances cytotoxicity, which was correlated to apoptosis activation through quantification of caspase-3 activity. In addition, increased caspase-9 levels revealed that the intrinsic or mitochondrial pathway of apoptosis was implicated. This assumption was further evidenced by the presence, in glioma cells, of Bax protein overexpression-a core regulator of this apoptotic pathway. Our findings demonstrated the great potential of peptide TMZ/p53 co-delivery complexes for cellular transfection, p53 expression, and apoptosis induction, holding promising therapeutic value toward glioblastoma.
RESUMEN
Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.
Asunto(s)
Daphnia , Desinfección , Azul de Metileno , Fármacos Fotosensibilizantes , Aguas Residuales , Aguas Residuales/química , Desinfección/métodos , Daphnia/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Animales , Azul de Metileno/farmacología , Azul de Metileno/química , Porfirinas/química , Porfirinas/farmacología , Bacteriófagos/efectos de los fármacos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , EcotoxicologíaRESUMEN
Athabasca oil sands in Alberta, Canada, are large bitumen deposits and are one of the world's largest petroleum reserves. This research contributes to the growing body of knowledge on the influence of this naturally occurring bitumen on freshwaters. Using laboratory-based exposure studies, we examined the life cycle responses of the aquatic midge Chironomus riparius to both naturally formed solid bitumen incorporated in the sediment and its corresponding aqueous extracts, denominated as elutriates. The 28-day partial life cycle assay involved bitumen samples from two distinct geological origins in the Athabasca River Basin (Clearwater and McMurray formations), comprising both weathered and freshly collected bitumen from a total of 4 different rivers. Our results demonstrate a measurable impact of sediment-embedded bitumen on C. riparius life history traits, namely on their growth and emergence patterns. Furthermore, we observed that bitumen samples from the Ells River (McMurray formation), which were freshly collected from exposed river bank soil deposits, exerted the strongest effects on most studied eco-physiological endpoints. Bitumen extracts from the Steepbank River and Athabasca River in the McMurray Formation and Steepbank River in the Clearwater Formation followed, underscoring the geographical variance in bitumen-induced toxicity. Exposure to elutriates, simulating "weathered" bitumen generally did not induce adverse effects in C. riparius life-cycle endpoints compared to elutriates prepared from freshly eroded bank soils. This emphasizes the importance of considering bitumen sources, their age, and the aquatic receiving environment when assessing potential adverse exposure effects. Our study shows that exposure to freshly eroded soils/sediments can potentially affect benthic invertebrates. More research is needed to understand how hydrological changes affect bitumen sediment exposure and the associated risks to aquatic biota.
Asunto(s)
Chironomidae , Hidrocarburos , Contaminantes Químicos del Agua , Animales , Hidrocarburos/análisis , Alberta , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Chironomidae/efectos de los fármacos , Chironomidae/fisiología , Yacimiento de Petróleo y Gas , Monitoreo del Ambiente , Sedimentos Geológicos/química , RíosRESUMEN
The foreseen increasing application of copper-based nanomaterials (Cu-NMs), replacing or complementing existing Cu-agrochemicals, may negatively impact the soil microbiome. Thus, we studied the effects on soil microbiome function and composition of nano copper oxide (nCuO) or copper hydroxide NMs in a commercial (Kocide®3000) or a lab-synthetized formulation (nCu(OH)2) or bulk copper hydroxide (Cu(OH)2-B), at the commonly recommended Cu dose of 50 mg(Cu)kg-1 soil. Microbial responses were studied over 28 days in a designed indoor mesocosm. On day-28, in comparison to non-treated soil (CT), all Cu-treatments led to a reduction in dehydrogenase (95% to 68%), arylsulfatase (41% to 27%), and urease (40% to 20%) activity. There was a 32% increase in the utilization of carbon substrates in the nCuO-treatment and an increased abundance of viable bacteria in the nCu(OH)2-treatment (75% of heterotrophic and 69% of P-solubilizing bacteria). The relative abundance of Acidobacteria [Kocide®3000, nCuO, and Cu(OH)2-B treatments] and Flavobacteriia [nCu(OH)2-treatment] was negatively affected by Cu exposure. The abundance of Cu-tolerant bacteria increased in soils treated with Kocide®3000 (Clostridia) and nCu(OH)2 (Gemmatimonadetes). All Cu-treated soils exhibited a reduced abundance of denitrification-related genes (0.05% of nosZ gene). The DTPA-extractable pool of ionic Cu(II) varied among treatments: Cu(OH)2-B > Kocide®3000 â¼ nCuO>nCu(OH)2, which may explain changes on the soil microbiome composition, at the genera and OTU levels. Thus, our study revealed that Cu-materials (nano and bulk) influence the soil microbiome with implications on its ecological role. It highlights the importance of assessing the impact of Cu-materials under dynamic and complex exposure scenarios and emphasizes the need for specific regulatory frameworks for NMs.
Asunto(s)
Agricultura , Cobre , Microbiota , Microbiología del Suelo , Cobre/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Hidróxidos/química , Hidróxidos/farmacología , Nanopartículas del Metal/química , Nanoestructuras/químicaRESUMEN
The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of Enchytraeus crypticus (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured. Irrespective of the presence or absence of invertebrates, the effects were particularly marked upon exposure to increased air temperature and alterations in soil moisture levels (drought and flood scenarios). The observed effects can be partly explained by significant alterations in soil properties such as pH, dissolved organic carbon, and water-extractable heavy metals, which were observed for all scenarios in comparison to standard conditions. The occurrence of invertebrates mitigated some of the impacts observed on the soil microbial community, particularly in bacterial abundance, richness, diversity, and metabolic activity. Our findings emphasize the importance of considering the interplay between climate change, anthropogenic pressures, and soil biotic components to assess the impact of climate change on terrestrial ecosystems and to develop and implement effective management strategies.
Asunto(s)
Metales Pesados , Microbiota , Rayos Ultravioleta , Temperatura , Metales Pesados/toxicidad , SueloRESUMEN
The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, Daphnia magna was exposed to carbendazim (5 µg L-1) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a D. magna custom microarray). The results showed that carbendazim caused changes in genes involved in the response to stress, DNA replication/repair, neurotransmission, ATP production, and lipid and carbohydrate metabolism at concentrations already found in the environment. These outcomes support the results of previous studies, in which carbendazim induced genotoxic effects and reproduction impairment (increasing the number of aborted eggs with the decreasing number of neonates produced). The exposure of daphnids to carbendazim did not cause a stable change in gene transcription between generations, with more genes being differentially expressed in the F0 generation than in the F12 generation. This could show some possible daphnid acclimation after 12 generations and is aligned with previous multigenerational studies where few ecotoxicological effects at the individual and populational levels and other subcellular level effects (e.g., biochemical biomarkers) were found.
RESUMEN
Male infertility is a prevalent concern affecting couples worldwide. While genetic factors, hormonal imbalances, and reproductive system defects play significant roles, emerging evidence suggests that lifestyle choices also profoundly impact male fertility. This study aimed to explore the effects of several lifestyle factors, including tobacco and alcohol consumption, physical activity, and dietary habits, on semen quality parameters and molecular biomarkers. Thirty healthy male volunteers were recruited in the Urology service at Hospital Infante D. Pedro, Aveiro, Portugal. Participants completed lifestyle questionnaires and provided semen samples, which were analyzed according to the World Health Organization criteria by experienced technicians. We also analyzed the expression levels of antioxidant enzymes and heat-shock response-related proteins to explore the activation of signaling pathways involved in stress response within sperm cells. Our results revealed that tobacco consumption reduced semen volume and total sperm count. Although the changes in the percentage of total motility and normal morphology in the smokers' group did not reach statistical significance, a slight decrease was observed. Moreover, we identified for the first time a significant association between tobacco consumption and increased levels of heat shock protein 27 (HSP27) and phosphorylated HSP27 (p-HSP27) in sperm cells, indicating the potential detrimental effects of tobacco on the reproductive system. This study highlights that lifestyle factors reduce semen quality, possibly by inducing stress in sperm, raising awareness about the effects of these risk factors among populations at risk of male infertility.
RESUMEN
Mercury (Hg) is a global contaminant affecting aquatic ecosystems' health. Chronic exposure to Hg has shown that the normal development of zebrafish embryo-larvae is affected. However, the molecular mechanisms behind the toxicity of Hg on fish embryonic development are still poorly understood. This work aimed to investigate the effects of Hg exposure on zebrafish embryo-larvae using a combined approach at individual (mortality, embryo development and locomotor behavior) and biochemical (neurotoxicity and oxidative stress enzymatic activities and protein phosphatase expression) levels. The Fish Embryo Toxicity assay followed the Organization for Economic Cooperation and Development Guideline 236 and used a concentration range between 13 and 401 µg Hg/L. Lethal and developmental endpoints were examined at 24, 48, 72 and 96 hpf. Biochemical markers, including Acetylcholinesterase (AChE), Catalase (CAT), Glutathione Reductase (GR), and Glutathione-S-Transferase (GST) activities and, for the first time, the expression of the protein phosphatase 1 gamma (PP1γ) was assessed after 24, 48, 72 and 96 h of exposure to 10 and 100 µg Hg/L. The behavioral effects of a sublethal range of Hg (from 0.8 to 13 µg Hg/L) were assessed using an automated video tracking system at 120 hpf. Several developmental abnormalities on zebrafish embryos and larvae, including pericardial edema, spin and tail deformities and reduced rate of consumption of the yolk sac, were found after exposure to Hg (LC50 at 96 hpf of 139 µg Hg/L) with EC50 values for total malformations ranging from 22 to 264 µg Hg/L. After 96 hpf, no significant effects were observed in the CAT and GR activities. However, an increase in the GST activity in a concentration and time-dependent manner was found, denoting possible stress-related adaptation of zebrafish embryos to deleterious effects of Hg exposure. The AchE activity showed a response pattern in line with the behavioral responses. At the lowest concentration tested, no significant effects were found for the AChE activity, whereas a decrease in AChE activity was observed at 100 µg Hg/L, suggesting that exposure to Hg induced neurotoxic effects in zebrafish embryos which in turn may explain the lack of equilibrium found in this study (EC50 at 96 hpf of 83 µg Hg/L). Moreover, a decrease in the PP1γ expression was found after 96 h of exposure to 10 and 100 µg Hg/L. Thus, we suggest that Hg may be an inhibitor of PP1γ in zebrafish embryos-larvae and thus, along with the alterations in the enzymatic activity of GST, explain some of the developmental malformations observed, as well as the lack of equilibrium. Hence, in this study, we propose the use of PP1 expression, in combination with apical and biochemical endpoints, as a precursor for assessing Hg's toxic mechanism on embryonic development.
Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , Pez Cebra , Acetilcolinesterasa/metabolismo , Larva , Ecosistema , Estrés Oxidativo , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismoRESUMEN
Layered double hydroxides (LDHs) are innovative nanomaterials (NMs) with a typical nanoclay structure (height <40 nm) consisting of layers of metallic cations and hydroxides stabilized by anions and water molecules. Upon specific triggers, anions can exchange by others in the surrounding environment. Due to this stimuli-responsive behavior, LDHs are used as carriers of active ingredients in the industrial or pharmaceutical sectors. Available technical guidelines to evaluate the ecotoxicity of conventional substances do not account for the specificities of NMs, leading to inaccuracies and uncertainty. The present study aimed to assess two different exposure methodologies (serial dilutions of the stock dispersion vs. direct addition of NM powder to each concentration) on the ecotoxicological profile of different powder grain sizes of Zn-Al LDH-NO3 and Cu-Al LDH-NO3 (bulk, <25, 25-63, 63-125, 125-250, and >250 µm) in the growth of the freshwater microalgae Raphidocelis subcapitata. Results revealed that the serial dilutions methodology was preferable for Zn-Al LDH-NO3, whereas for Cu-Al LDH-NO3 both methodologies were suitable. Thus, the serial dilutions methodology was selected to assess the ecotoxicity of different grain sizes for both LDHs. All Zn-Al LDH-NO3 grain sizes yielded similar toxicity, while Cu-Al LDH-NO3 powders with smaller grain sizes caused a higher effect on microalgae growth; thus, grain size separation might be advantageous for future applications of Cu-Al LDH-NO3s. Considering the differences between exposure methodologies for the Zn-Al LDH-NO3, further research involving other NMs and species must be carried out to achieve harmonization and validation for inter-laboratory comparison.
Asunto(s)
Microalgas , Nanoestructuras , Ecotoxicología , Polvos/farmacología , Hidróxidos/toxicidad , Hidróxidos/química , Agua Dulce , Nanoestructuras/toxicidadRESUMEN
Nano- and microplastic fragments (NMPs) exist ubiquitously in all environmental compartments. The literature-based evidence suggests that NMPs interact with other environmental contaminants in freshwater ecosystems through sorption mechanisms, thereby playing a vector role. Chemically bound NMPs can translocate throughout the environment, reaching long distances from the contaminant discharge site. In addition, they can be ab/adsorbed by freshwater organisms. Although many studies show that NMPs can increase toxicity towards freshwater biota through the carrier role, little is known regarding their potential to influence the bioaccumulation of environmental contaminants (EC) in freshwater species. This review is part II of a systematic literature review regarding the influence of NMPs on bioaccumulation. Part I deals with terrestrial organisms and part II is devoted to freshwater organisms. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA ScR) was used for the literature search and selection. Only studies that assessed the bioaccumulation of EC in the presence of NMPs and compared this with the bioaccumulation of the isolated EC were considered. Here, we discuss the outcome of 46 papers, considering NMPs that induced an increase, induced a decrease, or caused no effect on bioaccumulation. Lastly, knowledge gaps are identified, and future directives for this area of research are discussed.
RESUMEN
Mesoporous silica engineered nanomaterials are of interest to the industry due to their drug-carrier ability. Advances in coating technology include using mesoporous silica nanocontainers (SiNC) loaded with organic molecules as additives in protective coatings. The SiNC loaded with the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT), i.e., SiNC-DCOIT, is proposed as an additive for antifouling marine paints. As the instability of nanomaterials in ionic-rich media has been reported and related to shifting key properties and its environmental fate, this study aims at understanding the behaviour of SiNC and SiNC-DCOIT in aqueous media with distinct ionic strengths. Both nanomaterials were dispersed in (i) low- (ultrapure water-UP) and (ii) high- ionic strength media-artificial seawater (ASW) and f/2 medium enriched in ASW (f/2 medium). The morphology, size and zeta potential (ζP) of both engineering nanomaterials were evaluated at different timepoints and concentrations. Results showed that both nanomaterials were unstable in aqueous suspensions, with the initial ζP values in UP below -30 mV and the particle size varying from 148 to 235 nm and 153 to 173 nm for SiNC and SiNC-DCOIT, respectively. In UP, aggregation occurs over time, regardless of the concentration. Additionally, the formation of larger complexes was associated with modifications in the ζP values towards the threshold of stable nanoparticles. In ASW, SiNC and SiNC-DCOIT formed aggregates (<300 nm) independently of the time or concentration, while larger and heterogeneous nanostructures (>300 nm) were detected in the f/2 medium. The pattern of aggregation detected may increase engineering nanomaterial sedimentation rates and enhance the risks towards dwelling organisms.
RESUMEN
Personal care products have various organic ultraviolet filters (UV filters) in their composition to increase protection against ultraviolet radiation. Some of these products also contain insect repellents in their formulations. Consequently, these compounds reach freshwater ecosystems, exposing aquatic organisms to a cocktail of anthropogenic contaminants. In this study, the joint effects of two most frequently detected UV filters (Benzophenone - 3 (BP3) and Enzacamene (4-MBC)) and joint effects of BP3 combined with an insect repellent (N, N diethyl-3-methylbenzamide - DEET) were evaluated using life-history traits of the aquatic midge Chironomus riparius such as emergence rate, time to emergence and imagoes body weight. The results showed synergistic effects between BP3 and 4-MBC for C. riparius emergence rate. Regarding the effects of BP3 and DEET mixture, our analysis suggests synergism in the case of males but antagonism in the case of females' time to emergence. Our results imply that the effects of UV filters present in sediments within chemical mixtures are complex and that the evaluation of effects using different life-history traits can yield different patterns of responses. This study demonstrates the importance of assessing the combined effects of pollutants used/found concomitantly in aquatic systems for a more accurate risk assessment, as individual chemical testing can underestimate the toxicity of organic UV filters.
Asunto(s)
Chironomidae , Repelentes de Insectos , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Larva , Repelentes de Insectos/toxicidad , DEET/toxicidad , Rayos Ultravioleta , Ecosistema , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/toxicidad , Benzofenonas/toxicidadRESUMEN
Since the late 70s, the continuous pharmaceuticals` input into the environment has raised concerns regarding the eventual risk posed by such compounds to human and environmental health. A major group of pharmaceuticals in terms of environmental impact are the antineoplastic agents (AAs). Herein, we followed a systematic review method to retrieve antineoplastic agents (AAs') ecotoxicological information regarding freshwater species. In this analysis, data from diverse taxonomic groups, from microorganisms to vertebrate species, looked at different levels of biological organization, including cell lines. Furthermore, this review gathers ecotoxicological parameters (EC50 and LC50) for imatinib (IM), cisplatin (CisPt), and 5-fluorouracil (5-FU) in species sensitivity distribution (SSD) curves and estimates the hazard concentration (HC5) considering the protection of 95% of the ecological community. Lastly, we suggest how we can improve AAs' Environmental Risk Assessment (ERA), considering potential adoptable toxicity endpoints, test duration, AAs metabolites testing, and AAs mixture exposure.
Asunto(s)
Antineoplásicos , Contaminantes Químicos del Agua , Humanos , Antineoplásicos/toxicidad , Mesilato de Imatinib , Organismos Acuáticos , Fluorouracilo/toxicidad , Agua Dulce/análisis , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Medición de RiesgoRESUMEN
Layered double hydroxides (LDHs) are stimuli-responsive anionic nanoclays. The vast possibilities of using LDHs can lead to their existence in the ecosystem, raising a question of potential ecological concern. However, little is known about the effect of these nanomaterials on freshwater organisms. The present study aimed to assess the ecotoxicological effects of Zinc-Aluminium LDH-nitrate (ZnAl LDH-NO3) in zebrafish (Danio rerio) early life stages. The endpoints measured were mortality, malformations and hatching rate after exposure of D. rerio embryos and larvae to ZnAl LDH-NO3 following the OECD 236 guideline. The behavioral, biochemical (markers of oxidative stress and neurotoxicity), and molecular (at DNA level) alterations were also assessed using sub-lethal concentrations. No observable acute effects were detected up to 415.2 mg LDH/L while the 96 h-LC50 was estimated as 559.9 mg/L. Tested LDH caused malformations in D. rerio embryos, such as pericardial edema, incomplete yolk sac absorption and tail deformities (96 h-EC50 = 172.4 mg/L). During the dark periods, the locomotor behavior in zebrafish larvae was affected upon ZnAl LDH-NO3 exposure. However, no significant biochemical and molecular changes were recorded. The present findings suggest that ZnAl LDH-NO3 can be regarded as a non-toxic nanomaterial towards D. rerio (E/LC50 > > 100 mg/L) although impairment of the locomotion behavior on zebrafish embryos can be expected at concentrations below 100 mg/L.
Asunto(s)
Embrión no Mamífero , Pez Cebra , Animales , Pez Cebra/anomalías , Embrión no Mamífero/anomalías , Ecosistema , Locomoción , Zinc/farmacologíaRESUMEN
Mesocosms allow the simulation of environmentally relevant conditions and can be used to establish more realistic scenarios of organism exposure to nanoparticles. An indoor mesocosm experiment simulating an aquatic stream ecosystem was conducted to assess the toxicokinetics and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) and AgNO3 in the freshwater invertebrates Girardia tigrina, Physa acuta and Chironomus riparius, and determine if previous single-species tests can predict bioaccumulation in the mesocosm. Water was daily spiked at 10 µg Ag L-1. Ag concentrations in water and sediment reached values of 13.4 µg Ag L-1 and 0.30 µg Ag g-1 in the Ag2S NP exposure, and 12.8 µg Ag L-1 and 0.20 µg Ag g-1 in the AgNO3. Silver was bioaccumulated by the species from both treatments, but with approximately 1.5, 3 and 11 times higher body Ag concentrations in AgNO3 compared to Ag2S NP exposures in snails, chironomids and planarians, respectively. In the Ag2S NP exposures, the observed uptake was probably of the particulate form. This demonstrates that this more environmentally relevant Ag nanoform may be bioavailable for uptake by benthic organisms. Interspecies interactions likely occurred, namely predation (planarians fed on chironomids and snails), which somehow influenced Ag uptake/bioaccumulation, possibly by altering organisms´ foraging behaviour. Higher Ag uptake rate constants were determined for AgNO3 (0.64, 80.4 and 1.12 Lwater g-1organism day-1) than for Ag2S NPs (0.05, 2.65 and 0.32 Lwater g-1organism day-1) for planarians, snails and chironomids, respectively. Biomagnification under environmentally realistic exposure seemed to be low, although it was likely to occur in the food chain P. acuta to G. tigrina exposed to AgNO3. Single-species tests generally could not reliably predict Ag bioaccumulation in the more complex mesocosm scenario. This study provides methodologies/data to better understand exposure, toxicokinetics and bioaccumulation of Ag in complex systems, reinforcing the need to use mesocosm studies to improve the risk assessment of environmental contaminants, specifically NPs, in aquatic environments.
Asunto(s)
Nanopartículas del Metal , Animales , Bioacumulación , Nanopartículas del Metal/toxicidad , Ecosistema , Toxicocinética , RíosRESUMEN
Determining the potential for accumulation of Ag from Ag2S NPs as an environmentally relevant form of AgNPs in different terrestrial organisms is an essential component of a realistic risk assessment of AgNP emissions to soils. The objectives of this study were first to determine the uptake kinetics of Ag in mealworms (Tenebrio molitor) and woodlice (Porcellio scaber) exposed to Ag2S NPs in a mesocosm test, and second, to check if the obtained toxicokinetics could be predicted by single-species bioaccumulation tests. In the mesocosms, mealworms and woodlice were exposed together with plants and earthworms in soil columns spiked with 10 µg Ag g-1 dry soil as Ag2S NPs or AgNO3. The total Ag concentrations in the biota were measured after 7, 14, and 28 days of exposure. A one-compartment model was used to calculate the Ag uptake and elimination rate constants. Ag from Ag2S NPs appeared to be taken up by the mealworms with significantly different uptake rate constants in the mesocosm compared to single-species tests (K1 = 0.056 and 1.66 g dry soil g-1 dry body weight day-1, respectively), and a significant difference was found for the Ag bioaccumulation factor (BAFk = 0.79 and 0.15 g dry soil g-1 dry body weight, respectively). Woodlice did not accumulate Ag from Ag2S NPs in both tests, but uptake from AgNO3 was significantly slower in mesocosm than in single-species tests (K1 = 0.037 and 0.26 g dry soil g-1 dry body weight day-1, respectively). Our results are of high significance because they show that single-species tests may not be a good predictor for the Ag uptake in mealworms and woodlice in exposure systems having greater levels of biological complexity. Nevertheless, single-species tests could be used as a fast screening approach to assess the potential of a substance to accumulate in biota before more complex tests are conducted.