Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Curr Biol ; 33(13): 2823-2829.e4, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329885

RESUMEN

Bachman's warbler1 (Vermivora bachmanii)-last sighted in 1988-is one of the only North American passerines to recently go extinct.2,3,4 Given extensive ongoing hybridization of its two extant congeners-the blue-winged warbler (V. cyanoptera) and golden-winged warbler (V. chrysoptera)5,6,7,8-and shared patterns of plumage variation between Bachman's warbler and hybrids between those extant species, it has been suggested that Bachman's warbler might have also had a component of hybrid ancestry. Here, we use historic DNA (hDNA) and whole genomes of Bachman's warblers collected at the turn of the 20th century to address this. We combine these data with the two extant Vermivora species to examine patterns of population differentiation, inbreeding, and gene flow. In contrast to the admixture hypothesis, the genomic evidence is consistent with V. bachmanii having been a highly divergent, reproductively isolated species, with no evidence of introgression. We show that these three species have similar levels of runs of homozygosity (ROH), consistent with effects of a small long-term effective population size or population bottlenecks, with one V. bachmanii outlier showing numerous long ROH and a FROH greater than 5%. We also found-using population branch statistic estimates-previously undocumented evidence of lineage-specific evolution in V. chrysoptera near a pigmentation gene candidate, CORIN, which is a known modifier of ASIP, which is in turn involved in melanic throat and mask coloration in this family of birds. Together, these genomic results also highlight how natural history collections are such invaluable repositories of information about extant and extinct species.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Pájaros Cantores/genética , Passeriformes/genética , Genoma , Hibridación Genética , Endogamia
2.
Evolution ; 77(8): 1818-1828, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37249077

RESUMEN

Whole-genome-level comparisons of sister taxa that vary in phenotype against a background of high genomic similarity can be used to identify the genomic regions that might underlie their phenotypic differences. In wild birds, this exploratory approach has detected markers associated with plumage coloration, beak and wing morphology, and complex behavioral traits like migration. Here, we use genomic comparisons of two closely related suboscine flycatchers (Empidonax difficilis and E. occidentalis) and their hybrids to search for candidate genes underlying their variation in innate vocal signals. We sequenced the genomes of 20 flycatchers that sang one of two species-specific pure song types and 14 putative hybrid individuals with intermediate song types. In the resulting genomic comparisons, we found six areas of high differentiation that may be associated with variation in nonlearned songs. These narrow regions of genomic differentiation contain a total of 67 described genes, of which three have been previously associated with forms of language impairment and dyslexia in humans and 18 are known to be differentially expressed in the song nuclei regions of the avian brain compared with adjacent parts of the avian brain. This "natural experiment" therefore may help identify loci associated with song differences that merit further study across bird lineages with both learned and innate vocalizations.


Asunto(s)
Passeriformes , Pájaros Cantores , Humanos , Animales , Pájaros Cantores/genética , Passeriformes/genética , Genómica , Encéfalo , Aprendizaje , Vocalización Animal
3.
Commun Biol ; 6(1): 154, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36747071

RESUMEN

Natural hybrid zones provide powerful opportunities for identifying the mechanisms that facilitate and inhibit speciation. Documenting the extent of genomic admixture allows us to discern the architecture of reproductive isolation through the identification of isolating barriers. This approach is particularly powerful for characterizing the accumulation of isolating barriers in systems exhibiting varying levels of genomic divergence. Here, we use a hybrid zone between two species-the Baltimore (Icterus galbula) and Bullock's (I. bullockii) orioles-to investigate this architecture of reproductive isolation. We combine whole genome re-sequencing with data from an additional 313 individuals amplityped at ancestry-informative markers to characterize fine-scale patterns of admixture, and to quantify links between genes and the plumage traits. On a genome-wide scale, we document several putative barriers to reproduction, including elevated peaks of divergence above a generally high genomic baseline, a large putative inversion on the Z chromosome, and complex interactions between melanogenesis-pathway candidate genes. Concordant and coincident clines for these different genomic regions further suggest the coupling of pre- and post-mating barriers. Our findings of complex and coupled interactions between pre- and post-mating barriers suggest a relatively rapid accumulation of barriers between these species, and they demonstrate the complexities of the speciation process.


Asunto(s)
Genoma , Aislamiento Reproductivo , Pájaros Cantores , Genómica , América del Norte , Fenotipo , Pájaros Cantores/genética
4.
Proc Biol Sci ; 289(1966): 20212277, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016545

RESUMEN

Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns-which involve combinations of multiple colour patches across the body-can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype-phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.


Asunto(s)
Plumas , Estudio de Asociación del Genoma Completo , Animales , Genoma , Melaninas , Fenotipo , Pigmentación/genética
5.
Ecol Evol ; 11(15): 10720-10723, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367608

RESUMEN

We present comments on an article published by Confer et al. (Ecology and Evolution, 10, 2020). Confer et al. (2020) aggregate data from multiple studies of social pairing between Vermivora chrysoptera and V. cyanoptera, two wood warblers in the family Parulidae that hybridize extensively where they co-occur. From analysis of these data, they conclude there is near-complete reproductive isolation between these two species. In our reply, we show that this finding is not supported by other lines of evidence, and significant drawbacks of their study design preclude such strong conclusions. In our critique, we show that (a) coarse-scale plumage classifications cannot be used to accurately estimate hybrid ancestry in Vermivora; (b) extra-pair paternity is very high in Vermivora and is likely facilitating hybridization, yet was not considered by Confer et al. (2020), and we suggest this will have a substantial influence on the interpretation of reproductive isolation in the system; and (c) the central finding of strong total reproductive isolation is not compatible with the results of other long-term studies, which demonstrate low isolation and high gene flow. We conclude with a more comprehensive interpretation of hybridization and reproductive isolation in Vermivora warblers.

6.
Mol Phylogenet Evol ; 164: 107205, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34015448

RESUMEN

The complex landscape history of the Neotropics has generated opportunities for population isolation and diversification that place this region among the most species-rich in the world. Detailed phylogeographic studies are required to uncover the biogeographic histories of Neotropical taxa, to identify evolutionary correlates of diversity, and to reveal patterns of genetic connectivity, disjunction, and potential differentiation among lineages from different areas of endemism. The White-crowned Manakin (Pseudopipra pipra) is a small suboscine passerine bird that is broadly distributed through the subtropical rainforests of Central America, the lower montane cloud forests of the Andes from Colombia to central Peru, the lowlands of Amazonia and the Guianas, and the Atlantic forest of southeast Brazil. Pseudopipra is currently recognized as a single, polytypic biological species. We studied the effect of the Neotropical landscape on genetic and phenotypic differentiation within this species using genomic data derived from double digest restriction site associated DNA sequencing (ddRAD), and mitochondrial DNA. Most of the genetic breakpoints we identify among populations coincide with physical barriers to gene flow previously associated with avian areas of endemism. The phylogenetic relationships among these populations imply a novel pattern of Andean origination for this group, with subsequent diversification into the Amazonian lowlands. Our analysis of genomic admixture and gene flow reveals a complex history of introgression between some western Amazonian populations. These reticulate processes confound our application of standard concatenated and coalescent phylogenetic methods and raise the question of whether a lineage in the western Napo area of endemism should be considered a hybrid species. Lastly, analysis of variation in vocal and plumage phenotypes in the context of our phylogeny supports the hypothesis that Pseudopipra is a species-complex composed of at least 8, and perhaps up to 17 distinct species which have arisen in the last ~2.5 Ma.


Asunto(s)
Passeriformes , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Flujo Génico , Variación Genética , Genómica , Passeriformes/genética , Filogenia , Filogeografía
8.
Evolution ; 75(6): 1395-1414, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33908624

RESUMEN

The exploration of hybrid zones and the intergenomic conflicts exposed through hybridization provide windows into the processes of divergence and speciation. Sex chromosomes and mitonuclear incompatibilities have strong associations with the genetics of hybrid dysfunction. In ZW sex-determining systems, maternal co-inheritance of the mitochondrial and W chromosomes immediately exposes incompatibilities between these maternal contributions of one species and the Z chromosome of another. We analyze mitochondrial and Z chromosome admixture in the long-tailed finch (Poephila acuticauda) of Australia, where hybridizing subspecies differ prominently in Z chromosome genotype and in bill color, yet the respective centers of geographic admixture for these two traits are offset by 350 km. We report two well-defined mitochondrial clades that diverged ∼0.5 million years ago. Mitochondrial contact is geographically co-located within a hybrid zone of Z chromosome admixture and is displaced from bill color admixture by nearly 400 km. Consistent with Haldane's rule expectations, hybrid zone females are significantly less likely than males to carry an admixed Z chromosome or have mismatched Z-mitochondrial genotypes. Furthermore, there are significantly fewer than expected mitonuclear mismatches in hybrid zone females and paternal backcross males. Results suggest a potential for mitonuclear/sex chromosome incompatibilities in the emergence of reproductive isolation in this system.


Asunto(s)
ADN Mitocondrial/genética , Pinzones/genética , Hibridación Genética , Cromosomas Sexuales/genética , Animales , Australia , Femenino , Genética de Población , Genotipo , Haplotipos , Masculino , Modelos Genéticos , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Aislamiento Reproductivo
9.
Science ; 371(6536)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33766854

RESUMEN

Behavioral isolation can catalyze speciation and permit the slow accumulation of additional reproductive barriers between co-occurring organisms. We illustrate how this process occurs by examining the genomic and behavioral bases of pre-mating isolation between two bird species (Sporophila hypoxantha and the recently discovered S. iberaensis) that belong to the southern capuchino seedeaters, a recent, rapid radiation characterized by variation in male plumage coloration and song. Although these two species co-occur without obvious ecological barriers to reproduction, we document behaviors indicating species recognition by song and plumage traits and strong assortative mating associated with genomic regions underlying male plumage patterning. Plumage differentiation likely originated through the reassembly of standing genetic variation, indicating how novel sexual signals may quickly arise and maintain species boundaries.


Asunto(s)
Especiación Genética , Preferencia en el Apareamiento Animal , Passeriformes/genética , Passeriformes/fisiología , Aislamiento Reproductivo , Animales , Argentina , Evolución Biológica , Femenino , Variación Genética , Genoma , Haplotipos , Masculino , Mutación , Pigmentación/genética , Simpatría , Vocalización Animal
10.
Mol Ecol ; 30(5): 1251-1263, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33464634

RESUMEN

Populations of invasive species that colonize and spread in novel environments may differentiate both through demographic processes and local selection. European starlings (Sturnus vulgaris) were introduced to New York in 1890 and subsequently spread throughout North America, becoming one of the most widespread and numerous bird species on the continent. Genome-wide comparisons across starling individuals and populations can identify demographic and/or selective factors that facilitated this rapid and successful expansion. We investigated patterns of genomic diversity and differentiation using reduced-representation genome sequencing of 17 winter-season sampling sites. Consistent with this species' high dispersal rate and rapid expansion history, we found low geographical differentiation and few FST outliers even at a continental scale. Despite starting from a founding population of ~180 individuals, North American starlings show only a moderate genetic bottleneck, and models suggest a dramatic increase in effective population size since introduction. In genotype-environment associations we found that ~200 single-nucleotide polymorphisms are correlated with temperature and/or precipitation against a background of negligible genome- and range-wide divergence. Given this evidence, we suggest that local adaptation in North American starlings may have evolved rapidly even in this wide-ranging and evolutionarily young system. This survey of genomic signatures of expansion in North American starlings is the most comprehensive to date and complements ongoing studies of world-wide local adaptation in these highly dispersive and invasive birds.


Asunto(s)
Estorninos , Animales , Variación Genética , Humanos , Especies Introducidas , New York , América del Norte , Estorninos/genética
11.
Proc Biol Sci ; 288(1943): 20201805, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33468000

RESUMEN

Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers-yellow-shafted and red-shafted flickers-to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes.


Asunto(s)
Plumas , Pigmentación , Animales , Aves , Carotenoides , Fenotipo , Pigmentación/genética
12.
Curr Biol ; 31(3): 643-649.e3, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33259789

RESUMEN

Species radiations have long served as model systems in evolutionary biology.1,2 However, it has only recently become possible to study the genetic bases of the traits responsible for diversification and only in a small number of model systems.3 Here, we use genomes of 36 species of North, Central, and South American warblers to highlight the role of pigmentation genes-involved in melanin and carotenoid processing-in the diversification of this group. We show that agouti signaling protein (ASIP) and beta-carotene oxygenase 2 (BCO2) are predictably divergent between species that differ in the distribution of melanin and carotenoid in their plumages, respectively. Among species, sequence variation at ASIP broadly mirrors the species' phylogenetic history, consistent with repeated, independent mutations generating melanin-based variation. In contrast, BCO2 variation is highly discordant from the species tree, with evidence of cross-lineage introgression among species like the yellow warbler (Setophaga petechia) and magnolia warbler (S. magnolia) with extensive carotenoid-based coloration. We also detect introgression of a small part of the BCO2 coding region (<3 kb) in S. discolor and S. vitellina, including an amino acid substitution that is unique to warblers but otherwise highly conserved across birds. Lateral transfer of carotenoid-processing genes has been documented in arthropods, but introgression of BCO2 as demonstrated here-presumably adaptive-represents the first example of carotenoid gene transfer among vertebrates. These contrasting genomic patterns show that both independent evolution in a common set of genes and past hybridization have fueled plumage diversification in this colorful avian radiation.


Asunto(s)
Pájaros Cantores , Animales , Carotenoides , Melaninas/genética , Filogenia , Pigmentación/genética , Pájaros Cantores/genética
13.
Evol Lett ; 4(6): 502-515, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312686

RESUMEN

Speciation is one of the most important processes in biology, yet the study of the genomic changes underlying this process is in its infancy. North American warbler species Setophaga townsendi and Setophaga occidentalis hybridize in a stable hybrid zone, following a period of geographic separation. Genomic differentiation accumulated during geographic isolation can be homogenized by introgression at secondary contact, whereas genetic regions that cause low hybrid fitness can be shielded from such introgression. Here, we examined the genomic underpinning of speciation by investigating (1) the genetic basis of divergent pigmentation traits between species, (2) variation in differentiation across the genome, and (3) the evidence for selection maintaining differentiation in the pigmentation genes. Using tens of thousands of single nucleotide polymorphisms (SNPs) genotyped in hundreds of individuals within and near the hybrid zone, genome-wide association mapping revealed a single SNP associated with cheek, crown, breast coloration, and flank streaking, reflecting pleiotropy (one gene affecting multiple traits) or close physical linkage of different genes affecting different traits. This SNP is within an intron of the RALY gene, hence we refer to it as the RALY SNP. We then examined between-species genomic differentiation, using both genotyping-by-sequencing and whole genome sequencing. We found that the RALY SNP is within one of the highest peaks of differentiation, which contains three genes known to influence pigmentation: ASIP, EIF2S2, and RALY (the ASIP-RALY gene block). Heterozygotes at this gene block are likely of reduced fitness, as the geographic cline of the RALY SNP has been narrow over two decades. Together, these results reflect at least one barrier to gene flow within this narrow (∼200 kb) genomic region that modulates plumage difference between species. Despite extensive gene flow between species across the genome, this study provides evidence that selection on a phenotype-associated genomic region maintains a stable species boundary.

14.
Proc Natl Acad Sci U S A ; 117(48): 30554-30565, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199636

RESUMEN

Numerous studies of emerging species have identified genomic "islands" of elevated differentiation against a background of relative homogeneity. The causes of these islands remain unclear, however, with some signs pointing toward "speciation genes" that locally restrict gene flow and others suggesting selective sweeps that have occurred within nascent species after speciation. Here, we examine this question through the lens of genome sequence data for five species of southern capuchino seedeaters, finch-like birds from South America that have undergone a species radiation during the last ∼50,000 generations. By applying newly developed statistical methods for ancestral recombination graph inference and machine-learning methods for the prediction of selective sweeps, we show that previously identified islands of differentiation in these birds appear to be generally associated with relatively recent, species-specific selective sweeps, most of which are predicted to be soft sweeps acting on standing genetic variation. Many of these sweeps coincide with genes associated with melanin-based variation in plumage, suggesting a prominent role for sexual selection. At the same time, a few loci also exhibit indications of possible selection against gene flow. These observations shed light on the complex manner in which natural selection shapes genome sequences during speciation.


Asunto(s)
Islas Genómicas , Modelos Genéticos , Animales , Biodiversidad , Variación Genética , Aprendizaje Automático
15.
Nature ; 587(7833): 252-257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177665

RESUMEN

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genética
16.
Mol Ecol ; 29(22): 4295-4307, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32978972

RESUMEN

Elucidating forces capable of driving species diversification in the face of gene flow remains a key goal in evolutionary biology. Song sparrows, Melospiza melodia, occur as 25 subspecies in diverse habitats across North America, are among the continent's most widespread vertebrate species, and are exemplary of many highly variable species for which the conservation of locally adapted populations may be critical to their range-wide persistence. We focus here on six morphologically distinct subspecies resident in the San Francisco Bay region, including three salt-marsh endemics and three residents in upland and riparian habitats adjacent to the Bay. We used reduced-representation sequencing to generate 2,773 SNPs to explore genetic differentiation, spatial population structure, and demographic history. Clustering separated individuals from each of the six subspecies, indicating subtle differentiation at microgeographic scales. Evidence of limited gene flow and low nucleotide diversity across all six subspecies further supports a hypothesis of isolation among locally adapted populations. We suggest that natural selection for genotypes adapted to salt marsh environments and changes in demography over the past century have acted in concert to drive the patterns of diversification reported here. Our results offer evidence of microgeographic specialization in a highly polytypic bird species long discussed as a model of sympatric speciation and rapid adaptation, and they support the hypothesis that conserving locally adapted populations may be critical to the range-wide persistence of similarly highly variable species.


Asunto(s)
Evolución Biológica , Genómica , Pájaros Cantores , Adaptación Fisiológica , Animales , Humanos , América del Norte , Pájaros Cantores/genética
17.
Evolution ; 74(7): 1498-1513, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243568

RESUMEN

The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent-including glutamate signaling, synaptic transmission, and catabolic processes-but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.


Asunto(s)
Hibridación Genética , Aislamiento Reproductivo , Selección Genética , Pájaros Cantores/genética , Distribución Animal , Animales , Genoma , Metabolismo/genética , Pájaros Cantores/metabolismo , Transmisión Sináptica/genética
18.
G3 (Bethesda) ; 10(2): 475-478, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31857331

RESUMEN

The Horned Lark (Eremophila alpestris) is a small songbird that exhibits remarkable geographic variation in appearance and habitat across an expansive distribution. While E. alpestris has been the focus of many ecological and evolutionary studies, we still lack a highly contiguous genome assembly for the Horned Lark and related taxa (Alaudidae). Here, we present CLO_EAlp_1.0, a highly contiguous assembly for E. alpestris generated from a blood sample of a wild, male bird captured in the Altiplano Cundiboyacense of Colombia. By combining short-insert and mate-pair libraries with the ALLPATHS-LG genome assembly pipeline, we generated a 1.04 Gb assembly comprised of 2713 scaffolds, with a largest scaffold size of 31.81 Mb, a scaffold N50 of 9.42 Mb, and a scaffold L50 of 30. These scaffolds were assembled from 23685 contigs, with a largest contig size of 1.69 Mb, a contig N50 of 193.81 kb, and a contig L50 of 1429. Our assembly pipeline also produced a single mitochondrial DNA contig of 14.00 kb. After polishing the genome, we identified 94.5% of single-copy gene orthologs from an Aves data set and 97.7% of single-copy gene orthologs from a vertebrata data set, which further demonstrates the high quality of our assembly. We anticipate that this genomic resource will be useful to the broader ornithological community and those interested in studying the evolutionary history and ecological interactions of larks, which comprise a widespread, yet understudied lineage of songbirds.


Asunto(s)
Genoma , Pájaros Cantores/genética , Animales , Masculino
19.
Evol Lett ; 3(4): 324-338, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31388443

RESUMEN

Theory suggests that different taxa having colonized a similar, challenging environment will show parallel or lineage-specific adaptations to shared selection pressures, but empirical examples of parallel evolution in independent taxa are exceedingly rare. We employed comparative genomics to identify parallel and lineage-specific responses to selection within and among four species of North American sparrows that represent four independent, post-Pleistocene colonization events by an ancestral, upland subspecies and a derived salt marsh specialist. We identified multiple cases of parallel adaptation in these independent comparisons following salt marsh colonization, including selection of 12 candidate genes linked to osmoregulation. In addition to detecting shared genetic targets of selection across multiple comparisons, we found many novel, species-specific signatures of selection, including evidence of selection of loci associated with both physiological and behavioral mechanisms of osmoregulation. Demographic reconstructions of all four species highlighted their recent divergence and small effective population sizes, as expected given their rapid radiation into saline environments. Our results highlight the interplay of both shared and lineage-specific selection pressures in the colonization of a biotically and abiotically challenging habitat and confirm theoretical expectations that steep environmental clines can drive repeated and rapid evolutionary diversification in birds.

20.
Proc Natl Acad Sci U S A ; 116(37): 18272-18274, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451666

RESUMEN

Animal migration demands an interconnected suite of adaptations for individuals to navigate over long distances. This trait complex is crucial for small birds whose migratory behaviors-such as directionality-are more likely innate, rather than being learned as in many longer-lived birds. Identifying causal genes has been a central goal of migration ecology, and this endeavor has been furthered by genome-scale comparisons. However, even the most successful studies of migration genetics have achieved low-resolution associations, identifying large chromosomal regions that encompass hundreds of genes, one or more of which might be causal. Here we leverage the genomic similarity among golden-winged (Vermivora chrysoptera) and blue-winged (V. cyanoptera) warblers to identify a single gene-vacuolar protein sorting 13A (VPS13A)-that is associated with distinct differences in migration to Central American (CA) or South American (SA) wintering areas. We find reduced sequence variation in this gene region for SA wintering birds, and show this is the likely result of natural selection on this locus. In humans, variants of VPS13A are linked to the neurodegenerative disorder chorea-acanthocytosis. This association provides one of the strongest gene-level associations with avian migration differences.


Asunto(s)
Migración Animal , Estudios de Asociación Genética , Selección Genética , Pájaros Cantores/fisiología , Proteínas de Transporte Vesicular/genética , Animales , Evolución Molecular , Genoma , Genómica , Geografía , Pájaros Cantores/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA