Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844245

RESUMEN

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Asunto(s)
Quirópteros , Ecolocación , Animales , Quirópteros/fisiología , Filogenia , Evolución Molecular , Mamíferos/genética , Audición/genética , Ballenas/fisiología , Aves/genética , Ecolocación/fisiología
2.
Mol Ecol Resour ; 22(1): 239-253, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34288508

RESUMEN

Conservation breeding management aims to reduce inbreeding and maximize the retention of genetic diversity in endangered populations. However, breeding management of wild populations is still rare, and there is a need for approaches that provide data-driven evidence of the likelihood of success of alternative in situ strategies. Here, we provide an analytical framework that uses in silico simulations to evaluate, for real wild populations, (i) the degree of population-level inbreeding avoidance, (ii) the genetic quality of mating pairs, and (iii) the potential genetic benefits of implementing two breeding management strategies. The proposed strategies aim to improve the genetic quality of breeding pairs by splitting detrimental pairs and allowing the members to re-pair in different ways. We apply the framework to the wild population of the Critically Endangered helmeted honeyeater by combining genomic data and field observations to estimate the inbreeding (i.e., pair-kinship) and genetic quality (i.e., Mate Suitability Index) of all mating pairs for seven consecutive breeding seasons. We found no evidence of population-level inbreeding avoidance and that ~91.6% of breeding pairs were detrimental to the genetic health of the population. Furthermore, the framework revealed that neither proposed management strategy would significantly improve the genetic quality or reduce inbreeding of the mating pairs in this population. Our results demonstrate the usefulness of our analytical framework for testing the efficacy of different in situ breeding management strategies and for making evidence-based management decisions.


Asunto(s)
Endogamia , Reproducción , Genómica , Probabilidad , Estaciones del Año
3.
Sci Rep ; 10(1): 15549, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968132

RESUMEN

In today's environmental crisis, conservationists are increasingly confronted with terminally endangered species whose last few surviving populations may be affected by allelic introgression from closely related species. Yet there is a worrying lack of evidence-based recommendations and solutions for this emerging problem. We analyzed genome-wide DNA markers and plumage variability in a critically endangered insular songbird, the Black-winged Myna (BWM, Acridotheres melanopterus). This species is highly threatened by the illegal wildlife trade, with its wild population numbering in the low hundreds, and its continued survival urgently depending on ex-situ breeding. Its three subspecies occur along a geographic gradient of melanism and are variably interpreted as three species. However, our integrative approach revealed that melanism poorly reflects the pattern of limited genomic differentiation across BWM subspecies. We also uncovered allelic introgression into the most melanistic subspecies, tertius, from the all-black congeneric Javan Myna (A. javanicus), which is native to the same islands. Based on our results, we recommend the establishment of three separate breeding programs to maintain subspecific traits that may confer local adaptation, but with the option of occasional cross-breeding between insurance populations in order to boost genetic diversity and increase overall viability prospects of each breeding program. Our results underscore the importance of evidence-based integrative approaches when determining appropriate conservation units. Given the rapid increase of terminally endangered organisms in need of ex-situ conservation, this study provides an important blueprint for similar programs dealing with phenotypically variable species.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Repeticiones de Microsatélite/genética , Pájaros Cantores/genética , Alelos , Animales , Cruzamiento , Variación Genética/genética , Haplotipos/genética , Fenotipo
4.
Sci Rep ; 9(1): 8546, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189934

RESUMEN

Genetic isolation of populations over evolutionary time leads to the formation of independent species. We examined a pair of shorebirds - the Kentish Plover Charadrius alexandrinus and the enigmatic White-faced Plover C. dealbatus - which display strong plumage differentiation, yet show minimal genetic divergence based on previous mitochondrial and microsatellite work. Two scenarios may lead to this situation: (1) they represent clinal or poorly diverged populations with limited genomic differentiation despite substantial plumage variation, or (2) they are diverging taxa at the cusp of speciation, with ongoing limited gene flow obliterating signals of differentiation in traditional genetic markers. We compared the genotypes of 98 plovers (59 Kentish Plovers, 35 White-faced Plovers and 4 genomic hybrids) sampled in eastern Asia and Europe using ddRADSeq to harvest over 8000 genome-wide SNPs. In contrast to previous studies, our analyses revealed two well defined genomic clusters, with limited hybridization and a narrow contact zone. We also uncovered significant differences in bill length and further sex-specific differences in size, which may signal differences in mate choice between Kentish and White-faced Plovers. Our results support the hypothesis that this shorebird duo is on the verge of speciation.


Asunto(s)
Charadriiformes/genética , Flujo Génico , Genoma , Polimorfismo de Nucleótido Simple , Caracteres Sexuales , Animales , Femenino , Estudio de Asociación del Genoma Completo , Masculino
5.
Mol Ecol ; 28(5): 936-950, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30659682

RESUMEN

Endangered species are often characterized by low genetic diversity and it is imperative for conservation efforts to incorporate the knowledge obtained from genetic studies for effective management. However, despite the promise of technological advances in sequencing, application of genome-wide data to endangered populations remains uncommon. In the present study we pursued a holistic conservation-genomic approach to inform a field-based management programme of a Critically Endangered species, the Siamese crocodile Crocodylus siamensis. Using thousands of single nucleotide polymorphisms from throughout the genome, we revealed signals of introgression from two other crocodile species within our sample of both wild and captive-bred Siamese crocodiles from Cambodia. Our genetic screening of the Siamese crocodiles resulted in the subsequent re-introduction of 12 individuals into the wild as well as the selection of four individuals for captive breeding programmes. Comparison of intraspecific genetic diversity revealed an alarmingly low contemporary effective population size in the wild (<50) with evidence of a recent bottleneck around Tonle Sap Lake. We also projected a probable future extinction in the wild (within fewer than five generations) in this population in the absence of re-introduction efforts. However, an increase in the number of potential breeders through re-introductions, including the one resulting from this project, could counter this trend. Our results have been implemented in ongoing re-introduction and captive breeding programmes, with major implications for the conservation management of Siamese crocodiles, and provide a blueprint for the rescue effort of other "terminally ill" populations of critically endangered species.


Asunto(s)
Caimanes y Cocodrilos/genética , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Genómica , Animales , Cruzamiento , Repeticiones de Microsatélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA