Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 4878, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890729

RESUMEN

Reduction in feed intake is a common physiological response of growing pigs facing stressful environmental conditions. The present experiment aims to study (1) the effects of a short-term feed restriction and refeeding on pig performance and metabolism and (2) the differential response between two breeds, Large White (LW), which has been selected for high performance, and Creole (CR), which is adapted to tropical conditions. A trial of 36 castrated male pigs (18 LW and 18 CR) was carried out. For each breed, half of the animals were restrictively fed at 50% of the standard feed allowance for 6 days and then fed normally for the next 14 days. Growth performance, thermoregulatory responses, plasma hormones and metabolites were measured. Results showed that, for all traits, the difference in response between the two breeds was small and rarely significant, which may be due to the short duration of the feed restriction. Irrespective of breed, feed restriction induced a reduction of growth rate and feed efficiency that was rapidly compensated for upon refeeding. Feed restriction also reduced skin temperature, rectal temperature and respiratory rate, as well as blood urea and cholesterol, which are of interest as potential biomarkers for feed restriction.


Asunto(s)
Alimentación Animal , Cruzamiento , Porcinos/metabolismo , Animales , Región del Caribe , Europa (Continente) , Humanos , Fenotipo , Porcinos/crecimiento & desarrollo , Factores de Tiempo , Clima Tropical
2.
BMC Genomics ; 17: 329, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142519

RESUMEN

BACKGROUND: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. RESULTS: Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. CONCLUSIONS: This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat.


Asunto(s)
Pollos/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Músculos Pectorales/embriología , Animales , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Calor , Desarrollo de Músculos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
3.
PLoS One ; 9(9): e105339, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25180913

RESUMEN

Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.


Asunto(s)
Temperatura Corporal , Pollos/crecimiento & desarrollo , Desarrollo Embrionario , Hígado/metabolismo , Músculos/metabolismo , Animales , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Insulina/metabolismo , Hígado/enzimología , Músculos/enzimología , Fosforilación , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA