Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Bioresour Technol ; 408: 131196, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094961

RESUMEN

Hydrogen-ethanol co-production can significantly improve the energy conversion efficiency of corn stalk (CS). In this study, with CS as the raw material, the co-production characteristics of one-step and two-step photo-fermentation hydrogen production (PFHP) and ethanol production were investigated. In addition, the gas and liquid characteristics of the experiment were analyzed. The kinetics of hydrogen-ethanol co-production was calculated, and the economics of hydrogen and ethanol were analyzed. Results of the experiments indicated that the two-step hydrogen-ethanol co-production had the best hydrogen production performance when the concentration of CS was 25 g/L. The total hydrogen production was 350.08 mL, and the hydrogen yield was 70.02 mL/g, which was 2.45 times higher than that of the one-step method. The efficiency of hydrogen-ethanol co-production was 17.79 %, which was 2.76 times more efficient than hydrogen compared to fermentation with hydrogen. The result provides technical reference for the high-quality utilization of CS.

2.
Phys Rev Lett ; 133(2): 020201, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073932

RESUMEN

The emergence of quantum mechanics and general relativity has transformed our understanding of the natural world significantly. However, integrating these two theories presents immense challenges, and their interplay remains untested. Recent theoretical studies suggest that the single-photon interference covering huge space can effectively probe the interface between quantum mechanics and general relativity. We developed an alternative design using unbalanced Michelson interferometers to address this and validated its feasibility over an 8.4 km free-space channel. Using a high-brightness single-photon source based on quantum dots, we demonstrated single-photon interference along this long-distance baseline. We achieved a phase measurement precision of 16.2 mrad, which satisfied the measurement requirements for a gravitational redshift at the geosynchronous orbit by 5 times the standard deviation. Our results confirm the feasibility of the single-photon version of the Colella-Overhauser-Werner experiment for testing the quantum effects in curved spacetime.

3.
Nanoscale ; 16(27): 12957-12966, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38898817

RESUMEN

The doping of semiconductor materials through some facile and appropriate methods holds significant promise in enhancing the catalytic performance of catalysts. Herein, NiCo2O4/g-C3N4 composite catalysts were synthesized via a high-energy ball milling method. The microstructure and physicochemical characterization of the as-prepared composites confirmed the successful loading of NiCo2O4 nanoparticles onto the g-C3N4 nanosheets. The NiCo2O4/g-C3N4 composites showed excellent catalytic effect under visible light/ultrasonic irradiation, and the efficiency of tetracycline hydrochloride (TCH) degradation reached 90% within 15 min. The optical properties of g-C3N4 nanosheets were improved by doping, and the diffusion of active materials and carrier migration rate were improved by ultrasonic assistance. Possible catalytic mechanisms and potential pathways of the NiCo2O4/g-C3N4 composites for the degradation of TCH triggered by visible light/ultrasonic irradiation were proposed. This study provides a new strategy for energy-assisted photocatalytic degradation of organic pollutants.

4.
Nat Commun ; 15(1): 4539, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806457

RESUMEN

Featuring high caloric value, clean-burning, and renewability, hydrogen is a fuel believed to be able to change energy structure worldwide. Biohydrogen production technologies effectively utilize waste biomass resources and produce high-purity hydrogen. Improvements have been made in the biohydrogen production process in recent years. However, there is a lack of operational data and sustainability analysis from pilot plants to provide a reference for commercial operations. In this report, based on spectrum coupling, thermal effect, and multiphase flow properties of hydrogen production, continuous pilot-scale biohydrogen production systems (dark and photo-fermentation) are established as a research subject. Then, pilot-scale hydrogen production systems are assessed in terms of sustainability. The system being evaluated, consumes 171,530 MJ of energy and emits 9.37 t of CO2 eq when producing 1 t H2, and has a payback period of 6.86 years. Our analysis also suggests future pathways towards effective biohydrogen production technology development and real-world implementation.


Asunto(s)
Biocombustibles , Fermentación , Hidrógeno , Hidrógeno/metabolismo , Proyectos Piloto , Biomasa , Reactores Biológicos
5.
Science ; 384(6695): 579-584, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696580

RESUMEN

Fractional quantum Hall (FQH) states are known for their robust topological order and possess properties that are appealing for applications in fault-tolerant quantum computing. An engineered quantum platform would provide opportunities to operate FQH states without an external magnetic field and enhance local and coherent manipulation of these exotic states. We demonstrate a lattice version of photon FQH states using a programmable on-chip platform based on photon blockade and engineering gauge fields on a two-dimensional circuit quantum electrodynamics system. We observe the effective photon Lorentz force and butterfly spectrum in the artificial gauge field, a prerequisite for FQH states. After adiabatic assembly of Laughlin FQH wave function of 1/2 filling factor from localized photons, we observe strong density correlation and chiral topological flow among the FQH photons. We then verify the unique features of FQH states in response to external fields, including the incompressibility of generating quasiparticles and the smoking-gun signature of fractional quantum Hall conductivity. Our work illustrates a route to the creation and manipulation of novel strongly correlated topological quantum matter composed of photons and opens up possibilities for fault-tolerant quantum information devices.

6.
Phys Rev Lett ; 132(13): 130603, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613293

RESUMEN

In the quest to build general-purpose photonic quantum computers, fusion-based quantum computation has risen to prominence as a promising strategy. This model allows a ballistic construction of large cluster states which are universal for quantum computation, in a scalable and loss-tolerant way without feed forward, by fusing many small n-photon entangled resource states. However, a key obstacle to this architecture lies in efficiently generating the required essential resource states on photonic chips. One such critical seed state that has not yet been achieved is the heralded three-photon Greenberger-Horne-Zeilinger (3-GHZ) state. Here, we address this elementary resource gap, by reporting the first experimental realization of a heralded 3-GHZ state. Our implementation employs a low-loss and fully programmable photonic chip that manipulates six indistinguishable single photons of wavelengths in the telecommunication regime. Conditional on the heralding detection, we obtain the desired 3-GHZ state with a fidelity 0.573±0.024. Our Letter marks an important step for the future fault-tolerant photonic quantum computing, leading to the acceleration of building a large-scale optical quantum computer.

7.
Phys Rev Lett ; 131(21): 210603, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072603

RESUMEN

Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers to achieve robust noise resistance. To achieve universality, magic states preparation is a commonly approach for introducing non-Clifford gates. Here, we present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code, and further experimentally implement it on the Zuchongzhi 2.1 superconducting quantum processor. An average of 0.8983±0.0002 logical fidelity at different logical states with distance three is achieved, taking into account both state preparation and measurement errors. In particular, the logical magic states |A^{π/4}⟩_{L}, |H⟩_{L}, and |T⟩_{L} are prepared nondestructively with logical fidelities of 0.8771±0.0009, 0.9090±0.0009, and 0.8890±0.0010, respectively, which are higher than the state distillation protocol threshold, 0.859 (for H-type magic state) and 0.827 (for T-type magic state). Our work provides a viable and efficient avenue for generating high-fidelity raw logical magic states, which is essential for realizing non-Clifford logical gates in the surface code.

8.
Phys Rev Lett ; 131(15): 150601, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897783

RESUMEN

We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical spoofing mockups. Estimating with the best classical algorithms to date, generating a single ideal sample from the same distribution on the supercomputer Frontier would take ∼600 yr using exact methods, whereas our quantum computer, Jiǔzhang 3.0, takes only 1.27 µs to produce a sample. Generating the hardest sample from the experiment using an exact algorithm would take Frontier∼3.1×10^{10} yr.

9.
Phys Rev Lett ; 131(13): 133601, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37831993

RESUMEN

Berry curvature is a fundamental element to characterize topological quantum physics, while a full measurement of Berry curvature in momentum space was not reported for topological states. Here we achieve two-dimensional Berry curvature reconstruction in a photonic quantum anomalous Hall system via Hall transport measurement of a momentum-resolved wave packet. Integrating measured Berry curvature over the two-dimensional Brillouin zone, we obtain Chern numbers corresponding to -1 and 0. Further, we identify bulk-boundary correspondence by measuring topology-linked chiral edge states at the boundary. The full topological characterization of photonic Chern bands from Berry curvature, Chern number, and edge transport measurements enables our photonic system to serve as a versatile platform for further in-depth study of novel topological physics.

10.
Phys Rev Lett ; 131(6): 060406, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625038

RESUMEN

Recent breakthroughs have opened the possibility of intermediate-scale quantum computing with tens to hundreds of qubits, and shown the potential for solving classical challenging problems, such as in chemistry and condensed matter physics. However, the high accuracy needed to surpass classical computers poses a critical demand on the circuit depth, which is severely limited by the non-negligible gate infidelity, currently around 0.1%-1%. The limited circuit depth places restrictions on the performance of variational quantum algorithms (VQA) and prevents VQAs from exploring desired nontrivial quantum states. To resolve this problem, we propose a paradigm of Schrödinger-Heisenberg variational quantum algorithms (SHVQA). Using SHVQA, the expectation values of operators on states that require very deep circuits to prepare can now be efficiently measured by rather shallow circuits. The idea is to incorporate a virtual Heisenberg circuit, which acts effectively on the measurement observables, into a real shallow Schrödinger circuit, which is implemented realistically on the quantum hardware. We choose a Clifford virtual circuit, whose effect on the Hamiltonian can be seen as efficient classical processing. Yet, it greatly enlarges the state's expressivity, realizing much larger unitary t designs. Our method enables accurate quantum simulation and computation that otherwise are only achievable with much deeper circuits or more accurate operations conventionally. This has been verified in our numerical experiments for a better approximation of random states, higher-fidelity solutions to the XXZ model, and the electronic structure Hamiltonians of small molecules. Thus, together with effective quantum error mitigation, our work paves the way for realizing accurate quantum computing algorithms with near-term quantum devices.

11.
Bioengineered ; 14(1): 2252218, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647338

RESUMEN

Deep eutectic solvent pretreatment with different temperatures and durations was applied to corncob to increase hydrogen yield via photo-fermentation. The correlation of composition, enzymatic hydrolysis, and hydrogen production in pretreated corncobs, as well as energy conversion was evaluated. Deep eutectic solvent pretreatment effectively dissolved lignin, retained cellulose, and enhanced both enzymatic hydrolysis and hydrogen production. The maximum cumulative hydrogen yield obtained under a pretreatment condition of 50°C and 12 h was 677.45 mL; this was 2.72 times higher than that of untreated corncob, and the corresponding lignin removal and enzymatic reduction of sugar concentration were 79.15% and 49.83 g/L, respectively; the highest energy conversion efficiency was 12.08%. The hydrogen production delay period was shortened, and the maximum shortening time was 18.9 h. Moreover, the cellulose content in pretreated corncob was positively correlated with both reducing sugar concentration and hydrogen yield and had the strongest influence on hydrogen production.


Asunto(s)
Disolventes Eutécticos Profundos , Lignina , Temperatura , Zea mays , Celulosa , Hidrógeno , Azúcares
12.
Bioresour Technol ; 386: 129509, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37473786

RESUMEN

In this paper, the plate-heat transfer type bio-methanol steam reforming reactor for hydrogen fuel cell vehicles and its operation performance was studied. The structure of the plate-heat transfer type for bio-methanol reforming has been designed and optimized with the application parameters of hydrogen production capacity, hydrogen production rate, bio-methanol conversion rate, volume limitation. Results showed the catalyst particle size has little influence when it less than 0.85 mm; However, when the catalyst loading was 20 g and the feed rate of bio-methanol solution was 1.5 mL/min, the effect of reforming bio-methanol was the best. At this time, the specific hydrogen production was 64.062 mL/gcat.min, the hydrogen production rate was 21.354 mL/s, the bio-methanol conversion rate was 82.25%. This paper can provide scientific reference for further research and development of high-efficiency and low-cost bio-methanol reforming hydrogen production equipment.


Asunto(s)
Calor , Metanol , Metanol/química , Hidrógeno/química , Vapor , Catálisis
13.
Nature ; 619(7971): 738-742, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438533

RESUMEN

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

14.
Sci Bull (Beijing) ; 68(15): 1625-1631, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453825

RESUMEN

Complex quantum electronic circuits can be used to design noise-protected qubits, but their complexity may exceed the capabilities of classical simulation. In such cases, quantum computers are necessary for efficient simulation. In this work, we demonstrate the use of variational quantum computing on a transmon-based quantum processor to simulate a superconducting quantum electronic circuit and design a new type of qubit called "Plasmonium", which operates in the plasmon-transition regime. The fabricated Plasmonium qubits show a high two-qubit gate fidelity of 99.58(3)%, as well as a smaller physical size and larger anharmonicity compared to transmon qubits. These properties make Plasmonium a promising candidate for scaling up multi-qubit devices. Our results demonstrate the potential of using quantum computers to aid in the design of advanced quantum processors.

15.
Opt Lett ; 48(13): 3507-3510, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390167

RESUMEN

The refractive index is a critical parameter in optical and photonic device design. However, due to the lack of available data, precise designs of devices working in low temperatures are still frequently limited. In this work, we have built a homemade spectroscopic ellipsometer (SE) and measured the refractive index of GaAs at a matrix of temperatures (4 K < T < 295 K) and photon wavelengths (700 nm < λ < 1000 nm) with a system error of ∼0.04. We verified the credibility of the SE results by comparing them with afore-reported data at room temperature and with higher precision values measured by vertical GaAs cavity at cryogenic temperatures. This work makes up for the lack of the near-infrared refractive index of GaAs at cryogenic temperatures and provides accurate reference data for semiconductor device design and fabrication.


Asunto(s)
Fotones , Refractometría , Temperatura , Semiconductores
16.
Bioresour Technol ; 385: 129377, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37385557

RESUMEN

In this project, it was verified that properly reducing the bioreactor hydrogen partial pressure (HPP) could significantly enhance the photo-fermentative hydrogen production (PFHP) by corn stalk. The maximal cumulative hydrogen yield (CHY) of 82.37 mL/g was obtained under full decompression to 0.4 bar, which was 35% higher than that without decompression. To increase CHY and save the pressure control cost, 12-hour, 24-hour and 36-hour decompression schemes were provided, and the optimal decompression phase in fermentation under each scheme was investigated. The 12-hour decompression scheme was suitable for 24-36 h of fermentation; the 24-hour decompression scheme implemented within 12-36 h of fermentation had a more desirable CHY; when adopting the 36-hour decompression scheme, operation during 12-48 h yielded a CHY of 81.70 mL/g that approximated whole process decompression. The strategies of decompression at the appropriate phase of fermentation were innovative, which offered a new option for optimizing PFHP economically.


Asunto(s)
Hidrógeno , Zea mays , Reactores Biológicos , Fermentación , Descompresión
17.
Nanoscale ; 15(26): 10858-10859, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37341593

RESUMEN

An introduction to the Nanoscale themed collection on emerging quantum technologies at the nanoscale, featuring high-quality research on quantum materials and devices for computing, sensing, imaging and communication.

18.
Phys Rev Lett ; 130(19): 190201, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243635

RESUMEN

Nonlocality arising in networks composed of several independent sources gives rise to phenomena radically different from that in standard Bell scenarios. Over the years, the phenomenon of network nonlocality in the entanglement-swapping scenario has been well investigated and demonstrated. However, it is known that violations of the so-called bilocality inequality used in previous experimental demonstrations cannot be used to certify the nonclassicality of their sources. This has put forward a stronger concept for nonlocality in networks, called full network nonlocality. Here, we experimentally observe full network nonlocal correlations in a network where the source-independence, locality, and measurement-independence loopholes are closed. This is ensured by employing two independent sources, rapid setting generation, and spacelike separations of relevant events. Our experiment violates known inequalities characterizing nonfull network nonlocal correlations by over 5 standard deviations, certifying the absence of classical sources in the realization.

19.
Phys Rev Lett ; 130(19): 190601, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243651

RESUMEN

Gaussian boson sampling (GBS) is not only a feasible protocol for demonstrating quantum computational advantage, but also mathematically associated with certain graph-related and quantum chemistry problems. In particular, it is proposed that the generated samples from the GBS could be harnessed to enhance the classical stochastic algorithms in searching some graph features. Here, we use Jiǔzhang, a noisy intermediate-scale quantum computer, to solve graph problems. The samples are generated from a 144-mode fully connected photonic processor, with photon click up to 80 in the quantum computational advantage regime. We investigate the open question of whether the GBS enhancement over the classical stochastic algorithms persists-and how it scales-with an increasing system size on noisy quantum devices in the computationally interesting regime. We experimentally observe the presence of GBS enhancement with a large photon-click number and a robustness of the enhancement under certain noise. Our work is a step toward testing real-world problems using the existing noisy intermediate-scale quantum computers and hopes to stimulate the development of more efficient classical and quantum-inspired algorithms.

20.
Sci Bull (Beijing) ; 68(9): 906-912, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37085397

RESUMEN

Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61-qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit and offers better phase resolution than conventional methods, such as measuring the imbalance. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA