Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.911
Filtrar
1.
Pest Manag Sci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742692

RESUMEN

BACKGROUND: Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS: Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION: These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.

2.
J Affect Disord ; 358: 192-204, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38703910

RESUMEN

Anxiety is a pervasive emotional state where, phenomenologically, subjects often report changes in their experience of time and space. However, a systematic and quantified examination of time and space experience in terms of a self-report scale is still missing which eventually could also be used for clinical differential diagnosis. Based on historical phenomenological literature and patients' subjective reports, we here introduce, in a first step, the Scale for Time and Space Experience of Anxiety (STEA) in a smaller sample of 19 subjects with anxiety disorders and, in a second step, validate its shorter clinical version (cSTEA) in a larger sample of 48 anxiety subjects. The main findings are (i) high convergent and divergent validity of STEA with both Beck Anxiety Inventory (BAI) (r = 0.7325; p < 0.001) and Beck Depression Inventory (BDI) (r = 0.7749; p < 0.0001), as well as with spontaneous mind wandering (MWS) (r = 0.7343; p < 0.001) and deliberate mind wandering (MWD) (r = 0.1152; p > 0.05), (ii) statistical feature selection shows 8 key items for future clinical usage (cSTEA) focusing on the experience of temporal and spatial constriction, (iii) the effects of time and space experience (i.e., for both STEA and cSTEA scores) on the level of anxiety (BAI) are mediated by the degree of spontaneous mind wandering (MWS), (iv) cSTEA allows for differentiating high levels of anxiety from the severity of comorbid depressive symptoms, and (v) significant reduction in the cSTEA scores after a therapeutic intervention (breathing therapy). Together, our study introduces a novel fully quantified and highly valid self-report instrument, the STEA, for measuring time-space experiences in anxiety. Further we develop a shorter clinical version (cSTEA) which allows assessing time space experience in a valid, quick, and simple way for diagnosis, differential diagnosis, and therapeutic monitoring of anxiety.

3.
Neurobiol Aging ; 140: 122-129, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38776615

RESUMEN

Brain biological age, which measures the aging process in the brain using neuroimaging data, has been used to assess advanced brain aging in neurodegenerative diseases, including Parkinson disease (PD). However, assuming that whole brain degeneration is uniform may not be sufficient for assessing the complex neurodegenerative processes in PD. In this study we constructed a multiscale brain age prediction models based on structural MRI of 1240 healthy participants. To assess the brain aging patterns using the brain age prediction model, 93 PD patients and 91 healthy controls matching for sex and age were included. We found increased global and regional brain age in PD patients. The advanced aging regions were predominantly noted in the frontal and temporal cortices, limbic system, basal ganglia, thalamus, and cerebellum. Furthermore, region-level rather than global brain age in PD patients was associated with disease severity. Our multiscale brain age prediction model could aid in the development of objective image-based biomarkers to detect advanced brain aging in neurodegenerative diseases.

4.
Biomolecules ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38785996

RESUMEN

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Ácido Glutámico , Gynostemma , Animales , Ácido Glutámico/metabolismo , Ratas , Masculino , Gynostemma/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Kaínico/toxicidad , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinapsinas/metabolismo , Fosforilación/efectos de los fármacos , Calcio/metabolismo , Extractos Vegetales
5.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773146

RESUMEN

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Astrocitos , Trastorno Depresivo Mayor , Ratones Noqueados , Animales , Astrocitos/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Ratones , Humanos , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuronas/metabolismo , Estrés Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Conducta Animal , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Depresión/metabolismo , Depresión/genética , Adulto , Transmisión Sináptica , Persona de Mediana Edad
6.
Phys Chem Chem Phys ; 26(20): 14538-14546, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38715520

RESUMEN

Metal-doped nitrogen clusters serve as effective models for elucidating the geometries and electronic properties of nitrogen-rich compounds at the molecular scale. Herein, we have conducted a systematic study of VIB-group metal chromium (Cr) doped nitrogen clusters through a combination of mass spectrometry techniques and density functional theory (DFT) calculations. The laser ablation is employed to generate CrNn+ clusters. The results reveal that CrN8+ cluster exhibits the highest signal intensity in mass spectrometry. The photodissociation experiments with 266 nm photons confirm that the chromium heteroazide clusters are composed of chromium ions and N2 molecules. Further structural searches and electronic structure calculations indicate that the cationic CrN8+ cluster possesses an X shaped geometry with D2 symmetry and exhibits robust stability. Molecular orbital and chemical bonding analyses demonstrate the existence of strong interactions between Cr+ cation and N2 ligands. The present findings enrich the geometries of metal doped nitrogen clusters and provide valuable guidance for the rational design and synthesis of novel transition metal nitrides.

7.
Heliyon ; 10(10): e30779, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38779006

RESUMEN

Background and objective: Spatial interaction between tumor-infiltrating lymphocytes (TILs) and tumor cells is valuable in predicting the effectiveness of immune response and prognosis amongst patients with lung adenocarcinoma (LUAD). Recent evidence suggests that the spatial distance between tumor cells and lymphocytes also influences the immune responses, but the distance analysis based on Hematoxylin and Eosin (H&E) -stained whole-slide images (WSIs) remains insufficient. To address this issue, we aim to explore the relationship between distance and prognosis prediction of patients with LUAD in this study. Methods: We recruited patients with resectable LUAD from three independent cohorts in this multi-center study. We proposed a simple but effective deep learning-driven workflow to automatically segment different cell types in the tumor region using the HoVer-Net model, and quantified the spatial distance (DIST) between tumor cells and lymphocytes based on H&E-stained WSIs. The association of DIST with disease-free survival (DFS) was explored in the discovery set (D1, n = 276) and the two validation sets (V1, n = 139; V2, n = 115). Results: In multivariable analysis, the low DIST group was associated with significantly better DFS in the discovery set (D1, HR, 0.61; 95 % CI, 0.40-0.94; p = 0.027) and the two validation sets (V1, HR, 0.54; 95 % CI, 0.32-0.91; p = 0.022; V2, HR, 0.44; 95 % CI, 0.24-0.81; p = 0.009). By integrating the DIST with clinicopathological factors, the integrated model (full model) had better discrimination for DFS in the discovery set (C-index, D1, 0.745 vs. 0.723) and the two validation sets (V1, 0.621 vs. 0.596; V2, 0.671 vs. 0.650). Furthermore, the computerized DIST was associated with immune phenotypes such as immune-desert and inflamed phenotypes. Conclusions: The integration of DIST with clinicopathological factors could improve the stratification performance of patients with resectable LUAD, was beneficial for the prognosis prediction of LUAD patients, and was also expected to assist physicians in individualized treatment.

8.
Small ; : e2402025, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766971

RESUMEN

Aqueous aluminum ion batteries (AAIBs) possess the advantages of high safety, cost-effectiveness, eco-friendliness and high theoretical capacity. However, the Al2O3 film on the Al anode surface, a natural physical barrier to the plating of hydrated aluminum ions, is a key factor in the decomposition of the aqueous electrolyte and the severe hydrogen precipitation reaction. To circumvent the obnoxious Al anode, a proof-of-concept of an anode-free AAIB is first proposed, in which Al2TiO5, as a cathode pre-aluminum additive (Al source), can replenish Al loss by over cycling. The Al-Cu alloy layer, formed by plating Al on the Cu foil surface during the charge process, possesses a reversible electrochemical property and is paired with a polyaniline (cathode) to stimulate the battery to exhibit high initial discharge capacity (175 mAh g-1), high power density (≈410 Wh L-1) and ultra-long cycle life (4000 cycles) with the capacity retention of ≈60% after 1000 cycles. This work will act as a primer to ignite the enormous prospective researches on the anode-free aqueous Al ion batteries.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38748521

RESUMEN

Vision Transformers have been the most popular network architecture in visual recognition recently due to the strong ability of encode global information. However, its high computational cost when processing high-resolution images limits the applications in downstream tasks. In this paper, we take a deep look at the internal structure of self-attention and present a simple Transformer style convolutional neural network (ConvNet) for visual recognition. By comparing the design principles of the recent ConvNets and Vision Transformers, we propose to simplify the self-attention by leveraging a convolutional modulation operation. We show that such a simple approach can better take advantage of the large kernels ( ≥ 7×7) nested in convolutional layers and we observe a consistent performance improvement when gradually increasing the kernel size from 5×5 to 21×21. We build a family of hierarchical ConvNets using the proposed convolutional modulation, termed Conv2Former. Our network is simple and easy to follow. Experiments show that our Conv2Former outperforms existent popular ConvNets and vision Transformers, like Swin Transformer and ConvNeXt in all ImageNet classification, COCO object detection and ADE20k semantic segmentation. Our code is available at https://github.com/HVision-NKU/Conv2Former.

10.
Neurophysiol Clin ; 54(4): 102982, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761793

RESUMEN

OBJECTIVE: The objective of this study was to develop artificial intelligence-based deep learning models and assess their potential utility and accuracy in diagnosing and predicting the future occurrence of diabetic distal sensorimotor polyneuropathy (DSPN) among individuals with type 2 diabetes mellitus (T2DM) and prediabetes. METHODS: In 394 patients (T2DM=300, Prediabetes=94), we developed a DSPN diagnostic and predictive model using Random Forest (RF)-based variable selection techniques, specifically incorporating the combined capabilities of the Clinical Toronto Neuropathy Score (TCNS) and nerve conduction study (NCS) to identify relevant variables. These important variables were then integrated into a deep learning framework comprising Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. To evaluate temporal predictive efficacy, patients were assessed at enrollment and one-year follow-up. RESULTS: RF-based variable selection identified key factors for diagnosing DSPN. Numbness scores, sensory test results (vibration), reflexes (knee, ankle), sural nerve attributes (sensory nerve action potential [SNAP] amplitude, nerve conduction velocity [NCV], latency), and peroneal/tibial motor NCV were candidate variables at baseline and over one year. Tibial compound motor action potential amplitudes were used for initial diagnosis, and ulnar SNAP amplitude for subsequent diagnoses. CNNs and LSTMs achieved impressive AUC values of 0.98 for DSPN diagnosis prediction, and 0.93 and 0.89 respectively for predicting the future occurrence of DSPN. RF techniques combined with two deep learning algorithms exhibited outstanding performance in diagnosing and predicting the future occurrence of DSPN. These algorithms have the potential to serve as surrogate measures, aiding clinicians in accurate diagnosis and future prediction of DSPN.

11.
J Cancer ; 15(9): 2866-2879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577604

RESUMEN

Objective: To investigate the role of neutrophils in colon cancer progression. Methods: Genetic data from 1,273 patients with colon cancer were procured from public databases and categorized based on genes linked to neutrophils through an unsupervised clustering approach. Through univariate Cox regression analysis, differentially expressed genes (DEGs) influencing overall survival (OS) were identified, forming the basis for establishing a prognostic risk score (PRS) system specific to colon cancer. Additionally, the correlation between PRS and patient prognosis, immune cell infiltration, and intratumoral gene mutations were analyzed. Validation of PRS as an indicator for "pan-tumor" immunotherapy was conducted using four distinct immunotherapy cohorts. Results: The research identified two distinct subtypes of colon cancer, namely Cluster A and B, with patients in Cluster B demonstrating remarkably superior prognoses over those in Cluster A. A total of 17 genes affecting OS were screened based on 109 DEGs between the two cluster for constructing the PRS system. Notably, individuals classified under the high-PRS group (PRShigh) exhibited poorer prognoses, significantly linked with immune cell infiltration, an immunosuppressive tumor microenvironment, and increased genomic mutations. Remarkably, analysis of immunotherapy cohorts indicated that patients with PRShigh exhibited enhanced clinical responses, a higher rate of progression-free events, and improved overall survival post-immunotherapy. The PRS system, developed based on tumor typing utilizing neutrophil-associated genes, exhibited a strong correlation with prognostic elements in colon cancer and emerged as a vital predictor of "pan-tumor" immunotherapy efficacy. Conclusions: PRS serves as a prognostic model for patients with colon cancer and holds the potential to act as a "pan-tumor" universal marker for assessing immunotherapy efficacy across different tumor types. The study findings lay a foundation for novel antitumor strategies centered on neutrophil-focused approaches.

12.
Int J Biol Macromol ; 268(Pt 2): 131819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688334

RESUMEN

The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.


Asunto(s)
Bombyx , Ciclo Celular , Proteínas de Insectos , Animales , Bombyx/genética , Bombyx/metabolismo , Ciclo Celular/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transducción de Señal , Seda/genética , Proliferación Celular/genética , Replicación del ADN , Regiones Promotoras Genéticas/genética , Endorreduplicación , Regulación de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
13.
Int Immunopharmacol ; 133: 112038, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621336

RESUMEN

Available online Atopic dermatitis (AD) is a chronic, persistent inflammatory skin disease characterized by eczema-like lesions and itching. Although topical steroids have been reported for treating AD, they are associated with adverse effects. Thus, safer medications are needed for those who cannot tolerate these agents for long periods. Mangiferin (MAN) is a flavonoid widely found in many herbs, with significant anti-inflammatory and immunomodulatory activities. However, the potential modulatory effects and mechanisms of MAN in treating Th2 inflammation in AD are unknown. In the present study, we reported that MAN could reduce inflammatory cell infiltration and scratching at the lesion site by decreasing MC903-induced levels of Th2-type cytokines, Histamine, thymic stromal lymphopoietin, Leukotriene B4, and immunoglobulin E. The mechanism may be related to reductions in MAPK and NF-κB-associated protein phosphorylation by macrophages. The results suggested that MAN may be a promising therapeutic agent for AD.


Asunto(s)
Citocinas , Dermatitis Atópica , Macrófagos , FN-kappa B , Células Th2 , Xantonas , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inmunología , Xantonas/farmacología , Xantonas/uso terapéutico , Animales , FN-kappa B/metabolismo , Células Th2/inmunología , Células Th2/efectos de los fármacos , Citocinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Humanos , Masculino , Linfopoyetina del Estroma Tímico , Inmunoglobulina E/metabolismo , Piel/efectos de los fármacos , Piel/patología , Piel/inmunología , Piel/metabolismo
14.
J Phys Condens Matter ; 36(33)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38684164

RESUMEN

The thermal transport properties of mantle minerals are of paramount importance to understand the thermal evolution processes of the Earth. Here, we perform extensively structural searches of two-dimensional MgSiO3monolayer by CALYPSO method and first-principles calculations. A stable MgSiO3monolayer withPmm2 symmetry is uncovered, which possesses a wide indirect band gap of 4.39 eV. The calculations indicate the lattice thermal conductivities of MgSiO3monolayer are 49.86 W (mK)-1and 9.09 W (mK)-1inxandydirections at room temperature. Our findings suggest that MgSiO3monolayer is an excellent low-dimensional thermoelectric material with highZTvalue of 4.58 from n-type doping in theydirection at 2000 K. The unexpected anisotropic thermal transport of MgSiO3monolayer is due to the puckered crystal structure and the asymmetric phonon dispersion as well as the distinct electron states around the Fermi level. These results offer a detailed description of structural and thermal transport properties of MgSiO3monolayer at extreme conditions.

15.
J Evid Based Med ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591668

RESUMEN

BACKGROUND: The objective of the current study was to evaluate whether the use of traditional Chinese medicine, Fuzheng Yiqing granule (FZYQG), was associated with a reduced infection risk of COVID-19 in close contacts. RESEARCH DESIGN AND METHODS: This was a prospective cohort study across 203 quarantine centres for close contacts and secondary contacts of COVID-19 patients in Yangzhou city. FZYQG group was defined as quarantined individuals who voluntarily took FZYQG; control group did not take FZYQG. The primary outcome was the coronavirus test positive rate during quarantine period. Logistic regression with propensity score inverse probability weighting was used for adjusted analysis to evaluate independent association between FZYQG and test positive rate. RESULTS: From July 13, 2021 to September 30, 2021, 3438 quarantined individuals took FZYQG and 2248 refused to take the granule. Test positive rate was significantly lower among quarantined individuals who took FZYQG (0.29% vs. 1.73%, risk ratio 0.17, 95% confidence interval (CI): 0.08-0.34, p < 0.001). On logistic regression, odds for test positive were decreased in FZYQG group (odds ratio: 0.16, 95% CI: 0.08-0.32, p < 0.001). CONCLUSIONS: Close and secondary contacts of COVID-19 patients who received FZYQG had a lower test positive rate than control individuals in real-world experience. TRIAL REGISTRATION: This study has been registered on Chinese Clinical Trial Registry (ChiCTR2100049590) on August 5, 2021.

16.
BMC Cardiovasc Disord ; 24(1): 199, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582861

RESUMEN

BACKGROUND: The study set out to develop an accurate and clinically valuable prognostic nomogram to assess the risk of in-hospital death in patients with acute decompensated chronic heart failure (ADCHF) and diabetes. METHODS: We extracted clinical data of patients diagnosed with ADCHF and diabetes from the Medical Information Mart for Intensive Care III database. Risk variables were selected utilizing least absolute shrinkage and selection operator regression analysis, and were included in multivariate logistic regression and presented in nomogram. bootstrap was used for internal validation. The discriminative power and predictive accuracy of the nomogram were estimated using the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve analysis (DCA). RESULTS: Among 867 patients with ADCHF and diabetes, In-hospital death occurred in 81 (9.3%) patients. Age, heart rate, systolic blood pressure, red blood cell distribution width, shock, ß-blockers, angiotensin converting enzyme inhibitors or angiotensin receptor blockers, assisted ventilation, and blood urea nitrogen were brought into the nomogram model. The calibration curves suggested that the nomogram was well calibrated. The AUC of the nomogram was 0.873 (95% CI: 0.834-0.911), which was higher that of the Simplified Acute Physiology Score II [0.761 (95% CI: 0.711-0.810)] and sequential organ failure assessment score [0.699 (95% CI: 0.642-0.756)], and Guidelines-Heart Failure score [0.782 (95% CI: 0.731-0.835)], indicating that the nomogram had better ability to predict in-hospital mortality. In addition, the internally validated C-index was 0.857 (95% CI: 0.825-0.891), which again verified the validity of this model. CONCLUSIONS: This study constructed a simple and accurate nomogram for predicting in-hospital mortality in patients with ADCHF and diabetes, especially in those who admitted to the intensive care unit for more than 48 hours, which contributed clinicians to assess the risk and individualize the treatment of patients, thereby reducing in-hospital mortality.


Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Humanos , Nomogramas , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Diabetes Mellitus/diagnóstico , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Estudios Retrospectivos
17.
Acta Neurol Belg ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607605

RESUMEN

BACKGROUND: BRAT1 (BRCA1-associated ataxia telangiectasia mutated activator 1) is involved in many important biological processes, including DNA damage response and maintenance of mitochondrial homeostasis. Dysfunctional BRAT1 causes variable clinical phenotypes, which hinders BRAT1-related disease from recognition and diagnosis. METHODS: Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was the guideline for this systematic review. MEDLINE was searched by terms ("BAAT1" and "BRAT1") from inception until June 21, 2022. RESULTS: Twenty-eight studies, screened out of 49 records, were included for data extraction. The data from fifty patients with mutated BRAT1 were collected. There are 3 high relevant phenotypes, 4 medium relevant phenotypes and 3 low relevant phenotypes. Eye-related abnormal features were most frequently reported: 27 abnormal features were observed. Thirty-nine kinds of pathogenic nucleotide change in BRAT1 were reported. Top three common mutations of BRAT1 were c.638_639insA (16 cases), c.1395G > A (5 cases) and c.294dupA (4 cases). Homozygous mutations in BRAT1 presented a more severe phenotype than those who are compound heterozygotes. CONCLUSIONS: This is the first comprehensive systematic review to present quantitative data about clinical characteristics of BRAT1-related disease, which helps doctors to recognize and diagnose it easier.

18.
Nucleic Acids Res ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634797

RESUMEN

Transcription-coupled repair (TCR) and global genomic repair (GGR) are two subpathways of nucleotide excision repair (NER). The TFIIH subunit Tfb1 contains a Pleckstrin homology domain (PHD), which was shown to interact with one PHD-binding segment (PB) of Rad4 and two PHD-binding segments (PB1 and PB2) of Rad2 in vitro. Whether and how the different Rad2 and Rad4 PBs interact with the same Tfb1 PHD, and whether and how they affect TCR and GGR within the cell remain mysterious. We found that Rad4 PB constitutively interacts with Tfb1 PHD, and the two proteins may function within one module for damage recognition in TCR and GGR. Rad2 PB1 protects Tfb1 from degradation and interacts with Tfb1 PHD at a basal level, presumably within transcription preinitiation complexes when NER is inactive. During a late step of NER, the interaction between Rad2 PB1 and Tfb1 PHD augments, enabling efficient TCR and GGR. Rather than interacting with Tfb1 PHD, Rad2 PB2 constrains the basal interaction between Rad2 PB1 and Tfb1 PHD, thereby weakening the protection of Tfb1 from degradation and enabling rapid augmentation of their interactions within TCR and GGR complexes. Our results shed new light on NER mechanisms.

20.
Zhen Ci Yan Jiu ; 49(4): 341-348, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649201

RESUMEN

OBJECTIVES: To study the regularity of central response to thermal needle stimulation of "Zusanli" (ST36) at different temperature, and to analyze the temperature difference of central responses. METHODS: Six male C57BL/6j adult mice were used in the present study. For observing activities of neurons in the hindlimb region of left primary somatosensory cortex (S1HL, A/P=0.46 mm, M/L=1.32 mm, D/V=-0.14 mm) by using a fast high-resolution miniature two-photon microscopy (FHIRM-TPM), the mice were anesthetized with 3% isoflurane (inhalation), with its head fixed in a stereotaxic apparatus, then, adeno-associated virus (AAV-hSyn-GCaMP6f-WPRE-hGHpA, for showing intracellular calcium transients in neurons transfected) was injected into the left S1HL region using a micro-syringe after scalp surgical operation. The mice's right ST36 were stimulated using internal thermal needles with the temperature being 43 ℃, or 45 ℃, or 47 ℃, separately. Image J software and MATLAB 2020b software were used to process the image data of neuronal calcium activity (Ca2+ signaling) in the left S1HL region, including the instant maximum calcium peak value (ΔF/F) in 2 s, instant calcium spike frequency in 2 s, short-term calcium peak value (ΔF/F) in 3.5 min, short-term calcium spike frequency in 3.5 min, calcium peak duration in 3.5 min, maximum calcium peak value (ΔF/F) at the 1st , 2nd and 3rd min, and calcium spike frequency at the 1st, 2nd and 3rd min after thermal needle stimulation. RESULTS: In comparison with the normal temperature needle stimulation, the instant intracellular maximum calcium peak value, instant calcium spike frequency, short-term maximum calcium peak value, short-term calcium spike frequency, and calcium peak duration of S1HL neurons in response to 43 ℃, 45 ℃ and 47 ℃ internal thermal needle stimulation of ST36 were significantly increased (P<0.001, P<0.01). Comparison among the 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation showed that the 45 ℃ thermal needle stimulation was obviously superior to 43 ℃ and 47 ℃ thermal needle stimulation in increasing instant calcium spike frequency, short-term calcium spike frequency and calcium peak duration of S1HL neurons (P<0.001, P<0.01). The 47 ℃ thermal needle stimulation was stronger than 43 ℃ and 45 ℃ thermal needle stimulation in increasing the instant maximum calcium peak value (P<0.001). The maximum calcium peak value was apparently higher (P<0.001) at the 2nd min than that at the 1st and 3rd min after 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation. No significant differences were found in the short-term maximum calcium peak value among the 3 thermal needle stimulation and in the calcium spike frequency among the 3 time points after 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation. CONCLUSIONS: S1HL neurons respond to all 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation of ST36 in mice, while more actively to 45 ℃ thermal needle stimulation.


Asunto(s)
Miembro Posterior , Ratones Endogámicos C57BL , Neuronas , Corteza Somatosensorial , Animales , Ratones , Masculino , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/metabolismo , Puntos de Acupuntura , Humanos , Agujas , Calor , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA