Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Adv Sci (Weinh) ; : e2309429, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075722

RESUMEN

Women with polycystic ovary syndrome (PCOS) exhibit sustained elevation in circulating androgens during pregnancy, an independent risk factor linked to pregnancy complications and adverse outcomes in offspring. Yet, further studies are required to understand the effects of elevated androgens on cell type-specific placental dysfunction and fetal development. Therefore, a PCOS-like mouse model induced by continuous androgen exposure is examined. The PCOS-mice exhibited impaired placental and embryonic development, resulting in mid-gestation lethality. Co-treatment with the androgen receptor blocker, flutamide, prevents these phenotypes including germ cell specification . Comprehensive profiling of the placenta by whole-genome bisulfite and RNA sequencing shows a reduced proportion of trophoblast precursors, possibly due to the downregulation of Cdx2 expression. Reduced expression of Gcm1, Synb, and Prl3b1 is associated with reduced syncytiotrophoblasts and sinusoidal trophoblast giant cells, impairs placental labyrinth formation. Importantly, human trophoblast organoids exposed to androgens exhibit analogous changes, showing impaired trophoblast differentiation as a key feature in PCOS-related pregnancy complications. These findings provide new insights into the potential cellular targets for future treatments.

2.
Adv Sci (Weinh) ; 11(28): e2401772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38767114

RESUMEN

Polycystic ovary syndrome (PCOS) is associated with a low-grade inflammation, but it is unknown how hyperandrogenism, the hallmark of PCOS, affects the immune system. Using a PCOS-like mouse model, it is demonstrated that hyperandrogenism affects immune cell populations in reproductive, metabolic, and immunological tissues differently in a site-specific manner. Co-treatment with an androgen receptor antagonist prevents most of these alterations, demonstrating that these effects are mediated through androgen receptor activation. Dihydrotestosterone (DHT)-exposed mice displayed a drastically reduced eosinophil population in the uterus and visceral adipose tissue (VAT). A higher frequency of natural killer (NK) cells and elevated levels of IFN-γ and TNF-α are seen in uteri of androgen-exposed mice, while NK cells in VAT and spleen displayed a higher expression level of CD69, a marker of activation or tissue residency. Distinct alterations of macrophages in the uterus, ovaries, and VAT are also found in DHT-exposed mice and can potentially be linked to PCOS-like traits of the model. Indeed, androgen-exposed mice are insulin-resistant, albeit unaltered fat mass. Collectively, it is demonstrated that hyperandrogenism causes tissue-specific alterations of immune cells in reproductive organs and VAT, which can have considerable implications on tissue function and contribute to the reduced fertility and metabolic comorbidities associated with PCOS.


Asunto(s)
Andrógenos , Modelos Animales de Enfermedad , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/inmunología , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Ratones , Andrógenos/metabolismo , Ratones Endogámicos C57BL , Hiperandrogenismo/inmunología , Hiperandrogenismo/metabolismo
3.
Elife ; 122024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180081

RESUMEN

Background: Polycystic ovary syndrome's (PCOS) main feature is hyperandrogenism, which is linked to a higher risk of metabolic disorders. Gene expression analyses in adipose tissue and skeletal muscle reveal dysregulated metabolic pathways in women with PCOS, but these differences do not necessarily lead to changes in protein levels and biological function. Methods: To advance our understanding of the molecular alterations in PCOS, we performed global proteomic and phosphorylation site analysis using tandem mass spectrometry, and analyzed gene expression and methylation. Adipose tissue and skeletal muscle were collected at baseline from 10 women with and without PCOS, and in women with PCOS after 5 weeks of treatment with electrical stimulation. Results: Perilipin-1, a protein that typically coats the surface of lipid droplets in adipocytes, was increased whereas proteins involved in muscle contraction and type I muscle fiber function were downregulated in PCOS muscle. Proteins in the thick and thin filaments had many altered phosphorylation sites, indicating differences in protein activity and function. A mouse model was used to corroborate that androgen exposure leads to a shift in muscle fiber type in controls but not in skeletal muscle-specific androgen receptor knockout mice. The upregulated proteins in muscle post treatment were enriched in pathways involved in extracellular matrix organization and wound healing, which may reflect a protective adaptation to repeated contractions and tissue damage due to needling. A similar, albeit less pronounced, upregulation in extracellular matrix organization pathways was also seen in adipose tissue. Conclusions: Our results suggest that hyperandrogenic women with PCOS have higher levels of extra-myocellular lipids and fewer oxidative insulin-sensitive type I muscle fibers. These could be key factors leading to insulin resistance in PCOS muscle while electric stimulation-induced tissue remodeling may be protective. Funding: Swedish Research Council (2020-02485, 2022-00550, 2020-01463), Novo Nordisk Foundation (NNF22OC0072904), and IngaBritt and Arne Lundberg Foundation. Clinical trial number NTC01457209.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Animales , Ratones , Femenino , Proteómica , Músculo Esquelético , Tejido Adiposo , Adipocitos
4.
Elife ; 122023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401759

RESUMEN

Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here, we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knockout mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.


Polycystic ovary syndrome is a lifelong condition associated with disrupted hormone levels, which affects around 15-20% of women. Characterised by increased levels of male sex hormones released by ovaries and adrenal glands, the condition affects menstrual cycles and can cause infertility and diabetes. Alongside the increase in male sex hormones, changes in the number of B cells have recently been observed in polycystic ovary syndrome. B cells produce antibodies that are important for fighting infection. However, it is thought that they might aggravate the condition by releasing antibodies and other inflammatory molecules which instead attack the body. It remained unclear whether changes in the B cell numbers were a result of excessive hormone levels or whether the B cells themselves were responsible for increasing the levels of male sex hormones. Ascani et al. showed that exposing female mice to excess male sex hormones leads to symptoms of polycystic ovary syndrome and causes the same changes to B cell frequencies as observed in women. This effect was prevented by simultaneously treating mice with a drug that blocks the action of male sex hormones. On the other hand, transferring antibodies from women with polycystic ovary syndrome to mice led to greater body weight and variation in B cell numbers. However, it did not result in clear symptoms of polycystic ovary syndrome. Furthermore, mice without B cells still developed symptoms when exposed to male sex hormones, showing that B cells alone are not solely responsible for the development of the condition. Taken together, the experiments show that B cells are not central mediators of polycystic ovary syndrome and the variation in their numbers is due to excess male sex hormones. This raises the question of whether B cells are an appropriate target for the treatment of this complex condition and paves the way for studies on how other immune cells are altered by hormones. Future work should also investigate how B cell function affects symptoms associated with polycystic ovary syndrome, given the association between antibody transfer and weight gain in mice.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratones , Animales , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Andrógenos , Peso Corporal , Fenotipo
5.
Cell Rep Med ; 4(5): 101035, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37148878

RESUMEN

The transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic. Our prenatal androgenized PCOS-like mouse model with or without diet-induced obesity confirmed that reproductive and metabolic dysfunctions in first-generation (F1) male offspring are passed down to F3. Sequencing of F1-F3 sperm reveals distinct differentially expressed (DE) small non-coding RNAs (sncRNAs) across generations in each lineage. Notably, common targets between transgenerational DEsncRNAs in mouse sperm and in PCOS-sons serum indicate similar effects of maternal hyperandrogenism, strengthening the translational relevance and highlighting a previously underappreciated risk of transmission of reproductive and metabolic dysfunction via the male germline.


Asunto(s)
Síndrome del Ovario Poliquístico , Embarazo , Humanos , Masculino , Femenino , Ratones , Animales , Síndrome del Ovario Poliquístico/genética , Estudios de Casos y Controles , Semen , Reproducción/genética , Obesidad/genética
6.
Commun Biol ; 6(1): 69, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653487

RESUMEN

Excessive androgen production and obesity are key to polycystic ovary syndrome (PCOS) pathogenesis. Prenatal androgenized (PNA), peripubertal androgenized, and overexpression of nerve growth factor in theca cells (17NF) are commonly used PCOS-like mouse models and diet-induced maternal obesity model is often included for comparsion. To reveal the molecular features of these models, we have performed transcriptome survey of the hypothalamus, adipose tissue, ovary and metaphase II (MII) oocytes. The largest number of differentially expressed genes (DEGs) is found in the ovaries of 17NF and in the adipose tissues of peripubertal androgenized models. In contrast, hypothalamus is most affected in PNA and maternal obesity models suggesting fetal programming effects. The Ms4a6e gene, membrane-spanning 4-domains subfamily A member 6E, a DEG identified in the adipose tissue in all mouse models is also differently expressed in adipose tissue of women with PCOS, highlighting a conserved disease function. Our comprehensive transcriptomic profiling of key target tissues involved in PCOS pathology highlights the effects of developmental windows for androgen exposure and maternal obesity, and provides unique resource to investigate molecular mechanisms underlying PCOS pathogenesis.


Asunto(s)
Obesidad Materna , Síndrome del Ovario Poliquístico , Ratones , Animales , Femenino , Embarazo , Humanos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Andrógenos/metabolismo , Transcriptoma , Obesidad Materna/complicaciones
7.
Transl Psychiatry ; 11(1): 45, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441551

RESUMEN

If and how obesity and elevated androgens in women with polycystic ovary syndrome (PCOS) affect their offspring's psychiatric health is unclear. Using data from Swedish population health registers, we showed that daughters of mothers with PCOS have a 78% increased risk of being diagnosed with anxiety disorders. We next generated a PCOS-like mouse (F0) model induced by androgen exposure during late gestation, with or without diet-induced maternal obesity, and showed that the first generation (F1) female offspring develop anxiety-like behavior, which is transgenerationally transmitted through the female germline into the third generation of female offspring (F3) in the androgenized lineage. In contrast, following the male germline, F3 male offspring (mF3) displayed anxiety-like behavior in the androgenized and the obese lineages. Using a targeted approach to search for molecular targets within the amygdala, we identified five differentially expressed genes involved in anxiety-like behavior in F3 females in the androgenized lineage and eight genes in the obese lineage. In mF3 male offspring, three genes were dysregulated in the obese lineage but none in the androgenized lineage. Finally, we performed in vitro fertilization (IVF) using a PCOS mouse model of continuous androgen exposure. We showed that the IVF generated F1 and F2 offspring in the female germline did not develop anxiety-like behavior, while the F2 male offspring (mF2) in the male germline did. Our findings provide evidence that elevated maternal androgens in PCOS and maternal obesity may underlie the risk of a transgenerational transmission of anxiety disorders in children of women with PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Efectos Tardíos de la Exposición Prenatal , Andrógenos , Animales , Ansiedad , Trastornos de Ansiedad/genética , Femenino , Humanos , Ratones , Obesidad/epidemiología , Obesidad/genética , Síndrome del Ovario Poliquístico/genética , Embarazo
8.
FASEB J ; 34(11): 14440-14457, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32892421

RESUMEN

Nerve growth factor (NGF) is critical for the development and maintenance of the peripheral sympathetic neurons. NGF is also involved in the ovarian sympathetic innervation and in the development and maintenance of folliculogenesis. Women with the endocrine disorder, polycystic ovary syndrome (PCOS), have an increased sympathetic nerve activity and increased ovarian NGF levels. The role of ovarian NGF excess in the PCOS pathophysiology and in the PCOS-related features is unclear. Here, using transgenic mice overexpressesing NGF in the ovarian theca cells (17NF mice), we assessed the female embryonic development, and the reproductive and metabolic profile in adult females. Ovarian NGF excess caused growth restriction in the female fetuses, and a delayed gonocyte and primary oocyte maturation. In adulthood, the 17NF mice displayed irregular estrous cycles and altered ovarian expression of steroidogenic and epigenetic markers. They also exhibited an increased sympathetic output with increased circulating dopamine, and metabolic dysfunction reflected by aberrant adipose tissue morphology and function, impaired glucose metabolism, decreased energy expenditure, and hepatic steatosis. These findings indicate that ovarian NGF excess leads to adverse fetal development and to reproductive and metabolic complications in adulthood, mirroring common features of PCOS. This work provides evidence that NGF excess may be implicated in the PCOS pathophysiology.


Asunto(s)
Desarrollo Fetal , Factor de Crecimiento Nervioso/genética , Ovario/metabolismo , Síndrome del Ovario Poliquístico/genética , Animales , Células Cultivadas , Dopamina/metabolismo , Ciclo Estral , Femenino , Ratones , Factor de Crecimiento Nervioso/metabolismo , Oogénesis , Ovario/embriología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/fisiopatología , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología , Regulación hacia Arriba
9.
Nat Commun ; 11(1): 1147, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123174

RESUMEN

The human ovary orchestrates sex hormone production and undergoes monthly structural changes to release mature oocytes. The outer lining of the ovary (cortex) has a key role in defining fertility in women as it harbors the ovarian reserve. It has been postulated that putative oogonial stem cells exist in the ovarian cortex and that these can be captured by DDX4 antibody isolation. Here, we report single-cell transcriptomes and cell surface antigen profiles of over 24,000 cells from high quality ovarian cortex samples from 21 patients. Our data identify transcriptional profiles of six main cell types; oocytes, granulosa cells, immune cells, endothelial cells, perivascular cells, and stromal cells. Cells captured by DDX4 antibody are perivascular cells, not oogonial stem cells. Our data do not support the existence of germline stem cells in adult human ovaries, thereby reinforcing the dogma of a limited ovarian reserve.


Asunto(s)
Células Madre Oogoniales , Ovario/citología , Análisis de la Célula Individual/métodos , Adulto , Biomarcadores/metabolismo , Células Cultivadas , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Procedimientos de Reasignación de Sexo , Transcriptoma
10.
Nat Med ; 25(12): 1894-1904, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31792459

RESUMEN

How obesity and elevated androgen levels in women with polycystic ovary syndrome (PCOS) affect their offspring is unclear. In a Swedish nationwide register-based cohort and a clinical case-control study from Chile, we found that daughters of mothers with PCOS were more likely to be diagnosed with PCOS. Furthermore, female mice (F0) with PCOS-like traits induced by late-gestation injection of dihydrotestosterone, with and without obesity, produced female F1-F3 offspring with PCOS-like reproductive and metabolic phenotypes. Sequencing of single metaphase II oocytes from F1-F3 offspring revealed common and unique altered gene expression across all generations. Notably, four genes were also differentially expressed in serum samples from daughters in the case-control study and unrelated women with PCOS. Our findings provide evidence of transgenerational effects in female offspring of mothers with PCOS and identify possible candidate genes for the prediction of a PCOS phenotype in future generations.


Asunto(s)
Andrógenos/metabolismo , Obesidad Materna/genética , Oocitos/metabolismo , Síndrome del Ovario Poliquístico/genética , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Estudios de Cohortes , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Núcleo Familiar , Obesidad Materna/sangre , Obesidad Materna/metabolismo , Obesidad Materna/fisiopatología , Oocitos/inmunología , Fenotipo , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/diagnóstico , Síndrome del Ovario Poliquístico/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Análisis de la Célula Individual
11.
Med Sci (Basel) ; 7(8)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387252

RESUMEN

Women with polycystic ovary syndrome (PCOS) exhibit compromised psychiatric health. Independent of obesity, women with PCOS are more susceptible to have anxiety and depression diagnoses and other neuropsychiatric disorders. During pregnancy women with PCOS display high circulating androgen levels that may cause prenatal androgen exposure affecting the growing fetus and increasing the risk of mood disorders in offspring. Increasing evidence supports a non-genetic, maternal contribution to the development of PCOS and anxiety disorders in the next generation. Prenatal androgenized rodent models reflecting the anxiety-like phenotype of PCOS in the offspring, found evidence for the altered placenta and androgen receptor function in the amygdala, together with changes in the expression of genes associated with emotional regulation and steroid receptors in the amygdala and hippocampus. These findings defined a previously unknown mechanism that may be critical in understanding how maternal androgen excess can increase the risk of developing anxiety disorders in daughters and partly in sons of PCOS mothers. Maternal obesity is another common feature of PCOS causing an unfavorable intrauterine environment which may contribute to psychiatric problems in the offspring. Whether environmental factors such as prenatal androgen exposure and obesity increase the offspring's susceptibility to develop psychiatric ill-health will be discussed.

12.
Cells ; 8(6)2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212843

RESUMEN

Putative oogonial stem cells (OSCs) have been isolated by fluorescence-activated cell sorting (FACS) from adult human ovarian tissue using an antibody against DEAD-box helicase 4 (DDX4). DDX4 has been reported to be germ cell specific within the gonads and localised intracellularly. White et al. (2012) hypothesised that the C-terminus of DDX4 is localised on the surface of putative OSCs but is internalised during the process of oogenesis. This hypothesis is controversial since it is assumed that RNA helicases function intracellularly with no extracellular expression. To determine whether the C-terminus of DDX4 could be expressed on the cell surface, we generated a novel expression construct to express full-length DDX4 as a DsRed2 fusion protein with unique C- and N-terminal epitope tags. DDX4 and the C-terminal myc tag were detected at the cell surface by immunocytochemistry and FACS of non-permeabilised human embryonic kidney HEK 293T cells transfected with the DDX4 construct. DDX4 mRNA expression was detected in the DDX4-positive sorted cells by RT-PCR. This study clearly demonstrates that the C-terminus of DDX4 can be expressed on the cell surface despite its lack of a conventional membrane-targeting or secretory sequence. These results validate the use of antibody-based FACS to isolate DDX4-positive putative OSCs.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Espacio Extracelular/metabolismo , Citometría de Flujo/métodos , Inmunohistoquímica/métodos , Anticuerpos/farmacología , Especificidad de Anticuerpos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Epítopos/metabolismo , Femenino , Células HEK293 , Humanos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ovario/metabolismo , Transporte de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA